Project description:Auricle defects are important and common occurrences in forensic medicine. The accurate measurement and assessment of auricle defects is key to identifying and evaluating injury, and the currently available methods are known to be labor intensive and inaccurate. In this paper, we introduce an identification and documentation of auricle defects solution, which consists of an optical three-dimensional (3D) method and an effective algorithm to calculate the maximum projection area and identify auricle defects. In this study, three separate examiners measured 40 auricles of 20 adults using 3D optical measurement and two other commonly used methods to investigate the validity and representative reliability of 3D optical measurement for auricle defect identification. Based on the statistical analysis, the 3D measurement method is valid and showed a better reliability than the reference methods. We also present a representative auricle defect identification case using the proposed 3D optical measurement method. The study concludes that the optical 3D measurement method is a reliable and effective tool for auricle defect identification.
Project description:Newts and other urodele amphibians can replace lost structures including limbs, providing a vertebrate model for the study of regeneration of complex tissues. The composite of different cell and tissue types in the limb, however, presents a challenge for their imaging in three-dimensions (3D) at cellular level resolution. To observe myofibers in vivo without distortion, we developed a streamlined protocol whereby 80 μm thick cryosections are mounted on slides, processed for immunohistochemistry, imaged using confocal microscopy and z-stacks rendered in 3D. This methodology enabled precise in situ rendering of regenerating muscle, demonstrating cell cycle reentry of nuclei within the myofiber syncytium. The high resolution imaging of muscle or comparable tissue types as intact 3D entities in the context of extracellular and intracellular molecules allows for the determination of signaling and cell response pathways, making this method useful for studies that attempt to characterize rare physiological events in vivo.
Project description:Millimetre-wave imaging is a powerful non-destructive inspection technique which has become widely used in areas such as through-the-wall imaging or concealed weapon detection. Nevertheless, current systems are usually limited to either a single view point providing a limited 3D millimeter-wave model or a multiview relying on the accurate movement of a robot arm through precise positions resulting in very bulky systems. In this paper, we present a set of techniques to achieve a multiview millimetre-wave scanner. The aperture of the scanner is kept below 16 cm so it can be portable and, consequently, multiview can be achieved by simple hand movements. In addition, optical images are also acquired with a two-fold purpose: i) building a complementary 3D-model by employing Structure from Movement (SfM) techniques; ii) estimating the scanner position and poses. The proposed technology is illustrated for people screening, proving the capacity of the system to detect hidden weapons.
Project description:Electrocorticography (ECoG) signals have emerged as a potential control signal for brain-computer interface (BCI) applications due to balancing signal quality and implant invasiveness. While there have been numerous demonstrations in which ECoG signals were used to decode motor movements and to develop BCI systems, the extent of information that can be decoded has been uncertain. Therefore, we sought to determine if ECoG signals could be used to decode kinematics (speed, velocity, and position) of arm movements in 3D space.To investigate this, we designed a 3D center-out reaching task that was performed by five epileptic patients undergoing temporary placement of ECoG arrays. We used the ECoG signals within a hierarchical partial-least squares (PLS) regression model to perform offline prediction of hand speed, velocity, and position.The hierarchical PLS regression model enabled us to predict hand speed, velocity, and position during 3D reaching movements from held-out test sets with accuracies above chance in each patient with mean correlation coefficients between 0.31 and 0.80 for speed, 0.27 and 0.54 for velocity, and 0.22 and 0.57 for position. While beta band power changes were the most significant features within the model used to classify movement and rest, the local motor potential and high gamma band power changes, were the most important features in the prediction of kinematic parameters.We believe that this study represents the first demonstration that truly three-dimensional movements can be predicted from ECoG recordings in human patients. Furthermore, this prediction underscores the potential to develop BCI systems with multiple degrees of freedom in human patients using ECoG.
Project description:Two-dimensional (2D) ultrasound shear wave elastography (SWE) has been widely used for soft tissue properties assessment. Given that shear waves propagate in three dimensions (3D), extending SWE from 2D to 3D is important for comprehensive and accurate stiffness measurement. However, implementation of 3D SWE on a conventional ultrasound scanner is challenging due to the low volume rate (tens of Hertz) associated with limited parallel receive capability of the scanner's hardware beamformer. Therefore, we developed an external mechanical vibration-based 3D SWE technique allowing robust 3D shear wave tracking and speed reconstruction for conventional scanners. The aliased shear wave signal detected with a sub-Nyquist sampling frequency was corrected by leveraging the cyclic nature of the sinusoidal shear wave generated by the external vibrator. Shear wave signals from different sub-volumes were aligned in temporal direction to correct time delays from sequential pulse-echo events, followed by 3D speed reconstruction using a 3D local frequency estimation algorithm. The technique was validated on liver fibrosis phantoms with different stiffness, showing good correlation (r = 0.99, p < 0.001) with values measured from a state-of-the-art SWE system (GE LOGIQ E9). The phantoms with different stiffnesses can be well-differentiated regardless of the external vibrator position, indicating the feasibility of the 3D SWE with regard to different shear wave propagation scenarios. Finally, shear wave speed calculated by the 3D method correlated well with magnetic resonance elastography performed on human liver (r = 0.93, p = 0.02), demonstrating the in vivo feasibility. The proposed technique relies on low volume rate imaging and can be implemented on the widely available clinical ultrasound scanners, facilitating its clinical translation to improve liver fibrosis evaluation.
Project description:Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.
Project description:The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5 degrees in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45 degrees . These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative large effect on the alignment of the eye rotation axis with respect to the head rotation axis.
Project description:Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
Project description:During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel-classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively.