Unknown

Dataset Information

0

Radiomics Is Effective for Distinguishing Coronavirus Disease 2019 Pneumonia From Influenza Virus Pneumonia.


ABSTRACT: Objectives: To develop and validate a radiomics model for distinguishing coronavirus disease 2019 (COVID-19) pneumonia from influenza virus pneumonia. Materials and Methods: A radiomics model was developed on the basis of 56 patients with COVID-19 pneumonia and 90 patients with influenza virus pneumonia in this retrospective study. Radiomics features were extracted from CT images. The radiomics features were reduced by the Max-Relevance and Min-Redundancy algorithm and the least absolute shrinkage and selection operator method. The radiomics model was built using the multivariate backward stepwise logistic regression. A nomogram of the radiomics model was established, and the decision curve showed the clinical usefulness of the radiomics nomogram. Results: The radiomics features, consisting of nine selected features, were significantly different between COVID-19 pneumonia and influenza virus pneumonia in both training and validation data sets. The receiver operator characteristic curve of the radiomics model showed good discrimination in the training sample [area under the receiver operating characteristic curve (AUC), 0.909; 95% confidence interval (CI), 0.859-0.958] and in the validation sample (AUC, 0.911; 95% CI, 0.753-1.000). The nomogram was established and had good calibration. Decision curve analysis showed that the radiomics nomogram was clinically useful. Conclusions: The radiomics model has good performance for distinguishing COVID-19 pneumonia from influenza virus pneumonia and may aid in the diagnosis of COVID-19 pneumonia.

SUBMITTER: Lin L 

PROVIDER: S-EPMC8239147 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8173680 | biostudies-literature
| S-EPMC7436469 | biostudies-literature
| S-EPMC8718216 | biostudies-literature
| S-EPMC7332742 | biostudies-literature
| S-EPMC8014714 | biostudies-literature
| S-EPMC8900889 | biostudies-literature
| S-EPMC7175452 | biostudies-literature
| S-EPMC9345409 | biostudies-literature
2024-04-22 | GSE202553 | GEO
| S-EPMC8492678 | biostudies-literature