Lipid droplets and the host-pathogen dynamic: FATal attraction?
Ontology highlight
ABSTRACT: In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
SUBMITTER: Bosch M
PROVIDER: S-EPMC8240858 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA