Project description:For the first time, the intermolecular orbital interaction between benzene and methane in the benzene-methane complex, a representative of weak interaction system, has been studied by us using ab initio calculations based on different methods and basis sets. Our results demonstrate obvious intermolecular orbital interaction between benzene and methane involving orbital overlaps including both occupied and unoccupied orbitals. Similar to interatomic orbital interaction, the intermolecular interaction of orbitals forms "bonding" and "antibonding" orbitals. In the interaction between occupied orbitals, the total energy of the complex increases because of the occupation of the antibonding orbital. The existence of the CH-π hydrogen bond between benzene and methane causes a decrease in rest energy level, leading to at least -1.51 kcal/mol intermolecular interaction energy. Our finding extends the concept of orbital interaction from the intramolecular to the intermolecular regime and gives a reliable explanation of the deep orbital reformation in the benzene-methane complex.
Project description:Stacking interactions have been evaluated, employing computational methods, in dimers formed by analogous aliphatic and aromatic species of increasing size. Changes in stability as the systems become larger are mostly controlled by the balance of increasing repulsion and dispersion contributions, while electrostatics plays a secondary but relevant role. The interaction energy increases as the size of the system grows, but it does much faster in π-π dimers than in σ-π complexes and more remarkably than in σ-σ dimers. The main factor behind the larger stability of aromatic dimers compared to complexes containing aliphatic molecules is related to changes in the properties of the aromatic systems due to electron delocalization leading to larger dispersion contributions. Besides, an extra stabilization in π-π complexes is due to the softening of the repulsive wall in aromatic species that allows the molecules to come closer.
Project description:Inspired by the double-aromatic (σ and π) C6H3 +, C6I6 2+, and C6(SePh)6 2+ ring-shaped compounds, herein we theoretically study their borazine derivative analogues. The systems studied are the cation and dications with formulas B3N3H3 +, B3N3Br6 2+, B3N3I6 2+, B3N3(SeH)6 2+, and B3N3(TeH)6 2+. Our DFT calculations indicate that the ring-shaped planar structures of B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ are more stable in the singlet state, while those of B3N3Br6 2+ and B3N3(SeH)6 2+ prefer the triplet state. Besides, exploration of the potential energy surface shows that the ring-shaped structure is the putative global minimum only for B3N3I6 2+. According to chemical bonding analysis, B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ have σ and π delocalized bonds. The number of delocalized σ/π electrons is 2/6 for the first, and 10/6 for the second and third, similar to what their carbon analogs exhibit. Finally, the analysis of the magnetically induced current density allows B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ to be classified as strongly σ aromatic, and poorly π aromatic compounds.
Project description:MP2/aug-cc-pVTZ calculations were performed for complexes of BrF₃ and BrF₅ acting as Lewis acids through the bromine centre, with species playing a role of Lewis base: dihydrogen, acetylene, ethylene, and benzene. The molecular hydrogen donates electrons by its σ-bond, while in remaining moieties-in complexes of hydrocarbons; such an electron transfer follows from π-electrons. The complexes are linked by a kind of the halogen bond that is analyzed for the first time in this study, i.e., it is the link between the multivalent halogen and π or σ-electrons. The nature of such a halogen bond is discussed, as well as various dependencies and correlations are presented. Different approaches are applied here, the Quantum Theory of Atoms in Molecules, Natural Bond Orbital method, the decomposition of the energy of interaction, the analysis of electrostatic potentials, etc.
Project description:Molecular recognition mediated by σ-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative. In this study, η6-coordination of Cr(CO)3 to haloarenes, a neutral system, is demonstrated to significantly increase the electrophilic character of halogen bond donors, enabling weak donors such as chloroanisole to form short and directional Cl⋅⋅⋅O halogen bonds. Structural characterization using single-crystal X-ray diffraction and computational analysis of a series of η6-Cr(CO)3-coordinated haloarenes provides evidence for this enhancement. Furthermore, the effect is shown to extend to other heteroatomic substituents on the coordinated arene, e. g., other halogen atoms as well as elements of groups 16, 15, and 14 of the periodic table, broadening the scope of this approach.
Project description:Perylene bisimide (PBI) dyes are known as red, maroon and black pigments, whose colors depend on the close π-π stacking arrangement. However, contrary to the luminescent monomers, deep-red and black PBI pigments are commonly non- or only weakly fluorescent due to (multiple) quenching pathways. Here, we introduce N-alkoxybenzyl substituted PBIs that contain close π stacking arrangement (exhibiting dπ-π ≈ 3.5 Å, and longitudinal and transversal displacements of 3.1 Å and 1.3 Å); however, they afford deep-red emitters with solid-state fluorescence quantum yields (ΦF) of up to 60%. Systematic photophysical and computational studies in solution and in the solid state reveal a sensitive interconversion of the PBI-centred locally excited state and a charge transfer state, which depends on the dihedral angle (θ) between the benzyl and alkoxy groups. This effectively controls the emission process, and enables high ΦF by circumventing the common quenching pathways commonly observed for perylene black analogues.
Project description:The weak noncovalent interactions and flexibility of ligands play a key role in enantioselective metal-catalyzed reactions. In transition metal complexes and their catalytic applications, the experimental assessment and the design of key interactions is as difficult as the prediction of the enantioselectivities, especially for flexible, privileged ligands such as chiral phosphoramidites. Therefore, the interligand interactions in cis-PdII L2 Cl2 phosphoramidite complexes were investigated by NMR spectroscopy and computations. We were able to induce a strong conformational preference by breaking the symmetry of the C2 -symmetric side chain of one of the ligands, and shift the equilibrium between hetero- and homocomplexes towards heterocomplexes because of interligand interactions in the cis-complexes. The modulation of aryl substituents was exploited, along with the solvent effect. The combined CH-π and π-π interactions reveal design patterns for binding and folding of chiral ligands and catalysts.
Project description:A new mechanoluminescent material (4-(diphenylamino)phenyl)(4-(diphenylphosphanyl)phenyl)methanone (CDpP), which displays tunable mechanoluminescent emission colors, has been designed and successfully synthesized. CDpP shows two distinct mechanoluminescent colors (blue and green) in different crystalline states. Single-crystal analyses and femtosecond transient emission studies reveal that the striking tunable mechanoluminescence properties of CDpP mainly originate from the different C-H···π interactions in the crystal structures. CDpP crystals with more C-H···π interactions show blue mechanoluminescence (ML), and the emission is attributed to the locally excited (LE)-state because the twisting process for the excited state is restricted by C-H···π interactions. Conversely, CDpP crystals with fewer C-H···π interactions display green ML, in which the red-shifted emission band originates from the twisted intramolecular charge transfer (TICT) excited state because the diphenylamine moiety is relatively free to rotate. The manipulation of weak intermolecular interactions in the crystalline state is a useful and reliable strategy for the tuning of the ML emission wavelengths.
Project description:The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6 H4 Cl, 4-MeC6 H4 Br, 4-MeOC6 H4 Cl, 1,2-Br2 C6 H4 ) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6 H4 Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6 H4 Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.
Project description:In this paper, a novel recurrent sigma‒sigma neural network (RSPSNN) that contains the same advantages as the higher-order and recurrent neural networks is proposed. The batch gradient algorithm is used to train the RSPSNN to search for the optimal weights based on the minimal mean squared error (MSE). To substantiate the unique equilibrium state of the RSPSNN, the characteristic of stability convergence is proven, which is one of the most significant indices for reflecting the effectiveness and overcoming the instability problem in the training of this network. Finally, to establish a more precise evaluation of its validity, five empirical experiments are used. The RSPSNN is successfully applied to the function approximation problem, prediction problem, parity problem, classification problem, and image simulation, which verifies its effectiveness and practicability.