Project description:Preterm birth (PTB) is defined as birth before the 37th week of pregnancy and results in 15 million early deliveries worldwide every year. Presently, there is no clinical test to determine PTB risk; however, a panel of nine biomarkers found in maternal blood serum has predictive power for a subsequent PTB. A significant step in creating a clinical diagnostic for PTB is designing an automated method to extract and purify these biomarkers from blood serum. Here, microfluidic devices with 45 ?m?×?50 ?m cross-section channels were 3D printed with a built-in polymerization window to allow a glycidyl methacrylate monolith to be site-specifically polymerized within the channel. This monolith was then used as a solid support to attach antibodies for PTB biomarker extraction. Using these functionalized monoliths, it was possible to selectively extract a PTB biomarker, ferritin, from buffer and a human blood serum matrix. This is the first demonstration of monolith formation in a 3D printed microfluidic device for immunoaffinity extraction. Notably, this work is a crucial first step toward developing a 3D printed microfluidic clinical diagnostic for PTB risk.
Project description:Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.
Project description:Redesigning 3D-printed flow cells is reported used for heat transfer based detection of biomolecules from a flow-through system to an addition-type measurement cell. The aim of this study is to assess the performance of this new measurement design and critically analyse the influence of material properties and 3D printing approach on thermal analysis. Particular attention is paid to reduce the time to stabilisation, the sample volume in order to make the technique suitable for clinical applications, and improving the sensitivity of the platform by decreasing the noise and interference of air bubbles. The three different approaches that were studied included a filament polylactic acid cell using only fused filament fabrication (FFF), a resin cell printed using stereolitography (SLA), and finally a design made of copper, which was manufactured by combining metal injection moulding (MIM) with fused filament fabrication (FFF). Computational fluid dynamic (CFD) modelling was undertaken using ANSYS Fluent V18.1 to provide insight into the flow of heat within the measurement cell, facilitating optimisation of the system and theoretical response speed.It was shown that the measurement cells using SLA had the lowest noise (~ 0.6%) and shortest measurement time (15 min), whereas measurement cells produced using other approaches had lower specificity or suffered from voiding issues. Finally, we assessed the potential of these new designs for detection of biomolecules and amoxicillin, a commonly used beta lactam antibiotic, to demonstrate the proof of concept. It can be concluded that the resin addition-type measurement cells produced with SLA are an interesting affordable alternative, which were able to detect amoxicillin with high sensitivity and have great promise for clinical applications due to the disposable nature of the measurement cells in addition to small sample volumes.
Project description:3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices' to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.
Project description:In recent years, the use of prescribed and non-prescribed drugs has increased. Therefore, advances in new technologies and sensors for detecting molecules in natural environments are required. In this work, a 3D-printed polylactic acid stencil is used to fabricate paper-based analytical devices (ePADs). Herein, we report the use of carbon-based lab-manufactured conductive ink for the fabrication of sensors towards the detection of chloroquine and escitalopram. For each batch, eight ePADs were successfully fabricated. Firstly, the fabricated sensors were evaluated morphologically by scanning electron microscopy and electrochemically by cyclic voltammetry and electrochemical impedance spectroscopy experiments. The sensors displayed a well-defined voltammetric profile in the presence of the redox couple, when compared to a commercial carbon screen-printed electrode. Differential pulse voltammetry conducted the detection of chloroquine and escitalopram with detection limits of 4.0 and 0.5 µmol L-1, respectively. The ePADs fabricated using the 3D stencil are here presented as alternatives for the fabrication of electrochemical analytical devices.Supplementary informationThe online version contains supplementary material available at 10.1007/s10008-021-05075-w.
Project description:The introduction of poly(dimethylsiloxane) (PDMS) and soft lithography in the 90's has revolutionized the field of microfluidics by almost eliminating the need for a clean-room environment for device fabrication. More recently, 3D printing has been introduced to fabricate molds for soft lithography, the only step for which a clean-room environment is still often necessary, to further support the rapid prototyping of PDMS microfluidic devices. However, toxicity of most of the commercial 3D printing resins has been established, and little is known regarding the potential for 3D printed molds to leak components into the PDMS that would, in turn, hamper cells and/or tissues cultured in the devices. In the present study, we investigated if 3D printed molds produced by stereolithography can leach components into PDMS, and compared 3D printed molds to their more conventional SU-8 counterparts. Different leachates were detected in aqueous solutions incubated in the resulting PDMS devices prepared from widely used PDMS pre-polymer:curing agent ratios (10:1, 15:1 and 20:1), and these leachates were identified as originating from resins and catalyst substances. Next, we explored the possibility to culture cells and tissues in these PDMS devices produced from 3D printed molds and after proper device washing and conditioning. Importantly, we demonstrated that the resulting PDMS devices supported physiological cultures of HeLa cells and ovarian tissues in vitro, with superior outcomes than static conventional cultures.
Project description:We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.
Project description:Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology's enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional "batch" or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the "V" shape barrier was similar to that of the dialysis sac test and differed from the "basket" barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.
Project description:With the ability to create customizable products tailored to individual patients, the use of 3D printed medical devices has rapidly increased in recent years. Despite such interest in these materials, a risk assessment based on the material characterization of final device extracts-as per regulatory guidance-has not yet been completed, even though the printing process may potentially impact the leachability of polymer components. To further our understanding of the chemical impact of 3D printed medical devices, this study investigated the extractable profiles of four different materials, including a PLA polymer advertised as "FDA-approved". The fusion deposition modeling (FDM) printing process created distinct chemical and physical signatures in the extracts of certain materials. The application of an annealing procedure to printed devices led to a substantial decrease in extractable components by as much as a factor of 50. In addition, the use of a brass printing nozzle led to an increase in the amount of Pb detected in 3D printed device extracts. The data generated provides valuable information that can be used to help assess extractable risks of 3D printed medical devices, assist with future 3D printing designs, and may provide insight for agencies tasked with governing 3D printed medical device regulations.
Project description:Solid-phase extraction (SPE) is a general preconcentration method for sample preparation that can be performed on a variety of specimens. The miniaturization of SPE within a 3D printed microfluidic device further allows for fast and simple extraction of analytes while also enabling integration of SPE with other sample preparation and separation methods. Here, we present the development and application of a reversed-phase lauryl methacrylate-based monolith, formed in 3D printed microfluidic devices, which can selectively retain peptides and proteins. The effectiveness of these SPE monoliths and 3D printed microfluidic devices was tested using a panel of nine preterm birth biomarkers of varying hydrophobicities and ranging in mass from 2 to 470 kDa. The biomarkers were selectively retained, fluorescently labeled, and eluted separately from the excess fluorescent label in 3D printed microfluidic systems. These are the first results demonstrating microfluidic analysis processes on a complete panel of preterm birth biomarkers, an important step toward developing a miniaturized, fully integrated analysis system.