Project description:Fusarium wilt of flax is an aggressive disease caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. lini. It is a challenging pathogen presenting a constant threat to flax production industry worldwide. Previously, we reported chromosome-level assemblies of 5 highly pathogenic F. oxysporum f. sp. lini strains. We sought to characterize the genomic architecture of the fungus and outline evolutionary mechanisms shaping the pathogen genome. Here, we reveal the complex multi-compartmentalized genome organization and uncover its diverse evolutionary dynamics, which boosts genetic diversity and facilitates host adaptation. In addition, our results suggest that host of functions implicated in the life cycle of mobile genetic elements are main contributors to dissimilarity between proteomes of different Fusaria. Finally, our experiments demonstrate that mobile genetics elements are expressed in planta upon infection, alluding to their role in pathogenicity. On the whole, these results pave the way for further in-depth studies of evolutionary forces shaping the host-pathogen interaction.
Project description:In the present work, a highly pathogenic isolate of Fusarium oxysporum f. sp. lini, which is the most harmful pathogen affecting flax (Linum usitatissimum L.), was sequenced for the first time. To achieve a high-quality genome assembly, we used the combination of two sequencing platforms - Oxford Nanopore Technologies (MinION system) with long noisy reads and Illumina (HiSeq 2500 instrument) with short accurate reads. Given the quality of DNA is crucial for Nanopore sequencing, we developed the protocol for extraction of pure high-molecular-weight DNA from fungi. Sequencing of DNA extracted using this protocol allowed us to obtain about 85x genome coverage with long (N50 = 29 kb) MinION reads and 30x coverage with 2 × 250 bp HiSeq reads. Several tools were developed for genome assembly; however, they provide different results depending on genome complexity, sequencing data volume, read length and quality. We benchmarked the most requested assemblers (Canu, Flye, Shasta, wtdbg2, and MaSuRCA), Nanopore polishers (Medaka and Racon), and Illumina polishers (Pilon and POLCA) on our sequencing data. The assembly performed with Canu and polished with Medaka and POLCA was considered the most full and accurate. After further elimination of redundant contigs using Purge Haplotigs, we achieved a high-quality genome of F. oxysporum f. sp. lini with a total length of 59 Mb, N50 of 3.3 Mb, and 99.5% completeness according to BUSCO. We also obtained a complete circular mitochondrial genome with a length of 38.7 kb. The achieved assembly expands studies on F. oxysporum and plant-pathogen interaction in flax.
Project description:Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the causal agent of Fusarium wilt, a major threat to the banana industry worldwide. Here, we report the genome of a Foc TR4 strain from Peru, sequenced using a combination of Illumina and Oxford Nanopore Technologies.
Project description:Fusarium oxysporum causes vascular wilt in more than 100 plant species, resulting in massive economic losses. A deep understanding of the mechanisms of pathogenicity and symptom induction by this fungus is necessary to control crop wilt. The YjeF protein has been proven to function in cellular metabolism damage-repair in Escherichia coli and to play an important role in Edc3 (enhancer of the mRNA decapping 3) function in Candida albicans, but no studies have been reported on related functions in plant pathogenic fungi. In this work, we report how the FomYjeF gene in F. oxysporum f. sp. momordicae contributes to conidia production and virulence. The deletion of the FomYjeF gene displayed a highly improved capacity for macroconidia production, and it was shown to be involved in carbendazim’s associated stress pathway. Meanwhile, this gene caused a significant increase in virulence in bitter gourd plants with a higher disease severity index and enhanced the accumulation of glutathione peroxidase and the ability to degrade hydrogen peroxide in F. oxysporum. These findings reveal that FomYjeF affects virulence by influencing the amount of spore formation and the ROS (reactive oxygen species) pathway of F. oxysporum f. sp. momordicae. Taken together, our study shows that the FomYjeF gene affects sporulation, mycelial growth, pathogenicity, and ROS accumulation in F. oxysporum. The results of this study provide a novel insight into the function of FomYjeF participation in the pathogenicity of F. oxysporum f. sp. momordicae.
Project description:BackgroundFusarium wilt disease of banana is one of the most devastating diseases and was responsible for destroying banana plantations in the late nineteenth century. Fusarium oxysporum f. sp. cubense is the causative agent. Presently, both race 1 and 4 strains of Foc are creating havoc in the major banana-growing regions of the world. There is an urgent need to devise strategies to control this disease; that is possible only after a thorough understanding of the molecular basis of this disease.ResultsThere are a few regulators of Foc pathogenicity which are triggered during this infection, among which Sge1 (Six Gene Expression 1) regulates the expression of effector genes. The protein sequence is conserved in both race 1 and 4 strains of Foc indicating that this gene is vital for pathogenesis. The deletion mutant, FocSge1 displayed poor conidial count, loss of hydrophobicity, reduced pigmentation, decrease in fusaric acid production and pathogenicity as compared to the wild-type and genetically complemented strain. Furthermore, the C-terminal domain of FocSge1 protein is crucial for its activity as deletion of this region results in a knockout-like phenotype.ConclusionThese results indicated that FocSge1 plays a critical role in normal growth and pathogenicity with the C-terminal domain being crucial for its activity.
Project description:In this study transcriptome was analyzed on two fibrous varieties of flax: the susceptible Regina and the resistant Nike. The experiment was carried out on 2-week-old seedlings, because in this phase of development flax is the most susceptible to infection. We analyzed the whole seedlings, which allowed us to recognize the systemic response of the plants to the infection. We decided to analyze two time points: 24h and 48h, because our goal was to learn the mechanisms activated in the initial stages of infection, these points were selected based on the previous analysis of chitinase gene expression, whose increase in time of Fusarium oxysporum lini infection has been repeatedly confirmed both in the case of flax and other plant species. The results show that although qualitatively the responses of the two varieties are similar, it is the degree of the response that plays the role in the differences of their resistance to F. oxysporum.
Project description:Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.
Project description:Forward genetic screens are efficient tools for the dissection of complex biological processes, such as fungal pathogenicity. A transposon tagging system was developed in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici by inserting the novel modified impala element imp160::gfp upstream of the Aspergillus nidulans niaD gene, followed by transactivation with a constitutively expressed transposase. A collection of 2072 Nia(+) revertants was obtained from reporter strain T12 and screened for alterations in virulence, using a rapid assay for invasive growth on apple slices. Seven strains exhibited reduced virulence on both apple slices and intact tomato plants. Five of these were true revertants showing the re-insertion of imp160::gfp within or upstream of predicted coding regions, whereas the other two showed either excision without re-insertion or no excision. Linkage between imp160::gfp insertion and virulence phenotype was determined in four transposon-tagged loci using targeted deletion in the wild-type strain. Knockout mutants in one of the genes, FOXG_00016, displayed significantly reduced virulence, and complementation of the original revertant with the wild-type FOXG_00016 allele fully restored virulence. FOXG_00016 has homology to the velvet gene family of A. nidulans. The high rate of untagged virulence mutations in the T12 reporter strain appears to be associated with increased genetic instability, possibly as a result of the transactivation of endogenous transposable elements by the constitutively expressed transposase.