Unknown

Dataset Information

0

Catalytic Oxygenation of Hydrocarbons by Mono-μ-oxo Dicopper(II) Species Resulting from O-O Cleavage of Tetranuclear CuI /CuII Peroxo Complexes.


ABSTRACT: One of the challenges of catalysis is the transformation of inert C-H bonds to useful products. Copper-containing monooxygenases play an important role in this regard. Here we show that low-temperature oxygenation of dinuclear copper(I) complexes leads to unusual tetranuclear, mixed-valent μ4 -peroxo [CuI /CuII ]2 complexes. These Cu4 O2 intermediates promote irreversible and thermally activated O-O bond homolysis, generating Cu2 O complexes that catalyze strongly exergonic H-atom abstraction from hydrocarbons, coupled to O-transfer. The Cu2 O species can also be produced with N2 O, demonstrating their capability for small-molecule activation. The binding and cleavage of O2 leading to the primary Cu4 O2 intermediate and the Cu2 O complexes, respectively, is elucidated with a range of solution spectroscopic methods and mass spectrometry. The unique reactivities of these species establish an unprecedented, 100 % atom-economic scenario for the catalytic, copper-mediated monooxygenation of organic substrates, employing both O-atoms of O2 .

SUBMITTER: Jurgeleit R 

PROVIDER: S-EPMC8251984 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9069531 | biostudies-literature
| S-EPMC5952523 | biostudies-literature
| S-EPMC8179370 | biostudies-literature
| S-EPMC2765497 | biostudies-literature
| S-EPMC8048975 | biostudies-literature
| S-EPMC2787896 | biostudies-literature
| S-EPMC9112660 | biostudies-literature
| S-EPMC2960673 | biostudies-literature
| S-EPMC3515103 | biostudies-literature
| S-EPMC7611071 | biostudies-literature