Chemical Bonding in Homoleptic Carbonyl Cations [M{Fe(CO)5 }2 ]+ (M=Cu, Ag, Au).
Ontology highlight
ABSTRACT: Syntheses of the copper and gold complexes [Cu{Fe(CO)5 }2 ][SbF6 ] and [Au{Fe(CO)5 }2 ][HOB{3,5-(CF3 )2 C6 H3 }3 ] containing the homoleptic carbonyl cations [M{Fe(CO)5 }2 ]+ (M=Cu, Au) are reported. Structural data of the rare, trimetallic Cu2 Fe, Ag2 Fe and Au2 Fe complexes [Cu{Fe(CO)5 }2 ][SbF6 ], [Ag{Fe(CO)5 }2 ][SbF6 ] and [Au{Fe(CO)5 }2 ][HOB{3,5-(CF3 )2 C6 H3 }3 ] are also given. The silver and gold cations [M{Fe(CO)5 }2 ]+ (M=Ag, Au) possess a nearly linear Fe-M-Fe' moiety but the Fe-Cu-Fe' in [Cu{Fe(CO)5 }2 ][SbF6 ] exhibits a significant bending angle of 147° due to the strong interaction with the [SbF6 ]- anion. The Fe(CO)5 ligands adopt a distorted square-pyramidal geometry in the cations [M{Fe(CO)5 }2 ]+ , with the basal CO groups inclined towards M. The geometry optimization with DFT methods of the cations [M{Fe(CO)5 }2 ]+ (M=Cu, Ag, Au) gives equilibrium structures with linear Fe-M-Fe' fragments and D2 symmetry for the copper and silver cations and D4d symmetry for the gold cation. There is nearly free rotation of the Fe(CO)5 ligands around the Fe-M-Fe' axis. The calculated bond dissociation energies for the loss of both Fe(CO)5 ligands from the cations [M{Fe(CO)5 }2 ]+ show the order M=Au (De =137.2 kcal mol-1 )>Cu (De =109.0 kcal mol-1 )>Ag (De =92.4 kcal mol-1 ). The QTAIM analysis shows bond paths and bond critical points for the M-Fe linkage but not between M and the CO ligands. The EDA-NOCV calculations suggest that the [Fe(CO)5 ]→M+ ←[Fe(CO)5 ] donation is significantly stronger than the [Fe(CO)5 ]←M+ →[Fe(CO)5 ] backdonation. Inspection of the pairwise orbital interactions identifies four contributions for the charge donation of the Fe(CO)5 ligands into the vacant (n)s and (n)p AOs of M+ and five components for the backdonation from the occupied (n-1)d AOs of M+ into vacant ligand orbitals.
SUBMITTER: Pan S
PROVIDER: S-EPMC8252735 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA