Predictors of Time-in-Range (70-180 mg/dL) Achieved Using a Closed-Loop Control System.
Ontology highlight
ABSTRACT: Background: Studies of closed-loop control (CLC) in patients with type 1 diabetes (T1D) consistently demonstrate improvements in glycemic control as measured by increased time-in-range (TIR) 70-180 mg/dL. However, clinical predictors of TIR in users of CLC systems are needed. Materials and Methods: We analyzed data from 100 children aged 6-13 years with T1D using the Tandem Control-IQ CLC system during a randomized trial or subsequent extension phase. Continuous glucose monitor data were collected at baseline and during 12-16 weeks of CLC use. Participants were stratified into quartiles of TIR on CLC to compare clinical characteristics. Results: TIR for those in the first, second, third, and fourth quartiles was 54%, 65%, 71%, and 78%, respectively. Lower baseline TIR was associated with lower TIR on CLC (r = 0.69, P < 0.001). However, lower baseline TIR was also associated with greater improvement in TIR on CLC (r = -0.81, P < 0.001). During CLC, participants in the highest versus lowest TIR-quartile administered more user-initiated boluses daily (8.5 ± 2.8 vs. 5.8 ± 2.6, P < 0.001) and received fewer automated boluses (3.5 ± 1.0 vs. 6.0 ± 1.6, P < 0.001). Participants in the lowest (vs. the highest) TIR-quartile received more insulin per body weight (1.13 ± 0.27 vs. 0.87 ± 0.20 U/kg/d, P = 0.008). However, in a multivariate model adjusting for baseline TIR, user-initiated boluses and insulin-per-body-weight were no longer significant. Conclusions: Higher baseline TIR is the strongest predictor of TIR on CLC in children with T1D. However, lower baseline TIR is associated with the greatest improvement in TIR. As with open-loop systems, user engagement is important for optimal glycemic control.
SUBMITTER: Schoelwer MJ
PROVIDER: S-EPMC8252894 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA