Unknown

Dataset Information

0

AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection.


ABSTRACT: The outbreak of infectious diseases such as COVID-19 causes an urgent need for abundant personal protective equipment (PPE) which leads to a huge shortage of raw materials. Additionally, the inappropriate disposal and sterilization of PPE may result in a high risk of cross-contamination. Therefore, the exploration of antimicrobial materials possessing both microbe interception and self-decontamination effects to develop reusable and easy-to-sterilize PPE is of great importance. Herein, an aggregation-induced emission (AIE)-active luminogen-loaded nanofibrous membrane (TTVB@NM) sharing sunlight-triggered photodynamic/photothermal anti-pathogen functions are prepared using the electrospinning technique. Thanks to its porous nanostructure, TTVB@NM shows excellent interception effects toward ultrafine particles and pathogenic aerosols. Benefiting from the superior photophysical properties of the AIE-active dopants, TTVB@NM exhibits integrated properties of wide absorption in visible light range, efficient ROS generation, and moderate photothermal conversion performance. A series of antimicrobial evaluations reveal that TTVB@NM could effectively inactivate pathogenic aerosols containing bacteria (inhibition rate: >99%), fungi (~88%), and viruses (>99%) within only 10 min sunlight irradiation. This study represents a new strategy to construct reusable and easy-to-sterilize hybrid materials for potential bioprotective applications.

SUBMITTER: Li M 

PROVIDER: S-EPMC8253668 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6384967 | biostudies-literature
| S-EPMC7705181 | biostudies-literature
| S-EPMC8704349 | biostudies-literature