Project description:Molecular and functional significance of CREB1-NRF2 pathway on GSH dynamics of MSCs which critically determines therapeutic outcomes for treating allogeneic conflicts, including GvHD. A simple and reliable method to real-time monitor the redox status of MSCs which precisely predict their core functions including self-renewal, migration, and immunomodulatory capacities.
Project description:Glutathione (GSH), the most abundant nonprotein thiol functioning as an antioxidant, plays critical roles in maintaining the core functions of mesenchymal stem cells (MSCs), which are used as a cellular immunotherapy for graft-versus-host disease (GVHD). However, the role of GSH dynamics in MSCs remains elusive. Genome-wide gene expression profiling and high-throughput live-cell imaging assays revealed that CREB1 enforced the GSH-recovering capacity (GRC) of MSCs through NRF2 by directly up-regulating NRF2 target genes responsible for GSH synthesis and redox cycling. MSCs with enhanced GSH levels and GRC mediated by CREB1-NRF2 have improved self-renewal, migratory, anti-inflammatory, and T cell suppression capacities. Administration of MSCs overexpressing CREB1-NRF2 target genes alleviated GVHD in a humanized mouse model, resulting in improved survival, decreased weight loss, and reduced histopathologic damages in GVHD target organs. Collectively, these findings demonstrate the molecular and functional importance of the CREB1-NRF2 pathway in maintaining MSC GSH dynamics, determining therapeutic outcomes for GVHD treatment.
Project description:Allogeneic haematopoietic stem cell transplantation (alloHSCT) offers a potentially curative therapy for patients suffering from diseases of the haematopoietic system but requires a high level of expertise and is both resource intensive and expensive. A frequent and life-threatening complication is graft-versus-host disease (GvHD). Acute GvHD (aGvHD) generally causes skin, gastrointestinal and liver symptoms, but chronic GvHD (cGvHD) has a different pathophysiology and may affect nearly every organ or tissue of the body. In Europe, GvHD prophylaxis is generally a calcineurin inhibitor in combination with methotrexate, with high-dose systemic steroids used for advanced GvHD treatment. Between 39% and 59% of alloHSCT patients will develop aGvHD and around 36-37% will develop cGvHD. Steroid response decreases with increasing disease severity, which in turn leads to an increase in non-relapse mortality. GvHD imposes a financial burden on healthcare systems, significantly increasing post-alloHSCT costs. Increased GvHD disease severity magnifies this. Balancing immunosuppression to control the GvHD whilst maintaining a degree of immunocompetence against infection is critical. European GvHD guidelines acknowledge the lack of evidence to support a standard second-line therapy, and improved long-term outcomes and quality-of-life (QoL) remain an unmet need. Evidence generation for potential treatments is challenging. Issues to overcome include choice of comparator (extensive off-label usage); blinding; selection of relevant patient-reported outcome measures (PROMs); and rarity of the condition, which may infeasibly increase timescales to achieve clinical and statistical relevance.
Project description:Mesenchymal stem-cells (MSCs) are of particular interest for treating immune-related diseases due to their immunosuppressive capacities. Here, we show that Small sized MSCs primed with Hypoxia and Calcium ion (SHC-MSCs) exhibit the enhanced functions regarding stemness and immunomodulation for treating allogeneic conflicts. Compared with naïve cultured human umbilical cord-blood MSCs, SHC-MSCs were resistant to the passage dependent cellular senescence mediated by MCP-1 and p53/p21 cascade and highly secreted the pro-angiogenic and immune-modulatory factors, resulting in suppression of T-cell proliferation. Genome-wide DNA methylome and transcriptome analysis indicate that SHC-MSCs characteristically up-regulated immune-modulation, cell adhesion and cell-cycle related genes. As downstream factors, PLK1, ZNF143, DHRS3, and FOG2 proteins played a key role on the beneficial effects of SHC-MSCs, evidenced by the promoted self-renewal, migration, pro-angiogenic, anti-inflammatory, and T cell suppression capacities in their-over-expressing MSCs. Importantly, administration of SHC-MSCs or PLK1-over-expressing cells (PLK1-MSCs) significantly reduced the symptoms of graft-versus-host disease (GVHD) in a humanized mouse model which led to significantly improved survival, less weight loss, and less histopathologic injuries of GVHD target organs compared with naive MSC-infused mice. Collectively, our study suggests that small-sized MSCs primed with hypoxia could advance the therapeutic strategy for the clinical treatment of allogeneic conflicts including GVHD.
Project description:Mesenchymal stem-cells (MSCs) are of particular interest for treating immune-related diseases due to their immunosuppressive capacities. Here, we show that Small sized MSCs primed with Hypoxia and Calcium ion (SHC-MSCs) exhibit the enhanced functions regarding stemness and immunomodulation for treating allogeneic conflicts. Compared with naïve cultured human umbilical cord-blood MSCs, SHC-MSCs were resistant to the passage dependent cellular senescence mediated by MCP-1 and p53/p21 cascade and highly secreted the pro-angiogenic and immune-modulatory factors, resulting in suppression of T-cell proliferation. Genome-wide DNA methylome and transcriptome analysis indicate that SHC-MSCs characteristically up-regulated immune-modulation, cell adhesion and cell-cycle related genes. As downstream factors, PLK1, ZNF143, DHRS3, and FOG2 proteins played a key role on the beneficial effects of SHC-MSCs, evidenced by the promoted self-renewal, migration, pro-angiogenic, anti-inflammatory, and T cell suppression capacities in their-over-expressing MSCs. Importantly, administration of SHC-MSCs or PLK1-over-expressing cells (PLK1-MSCs) significantly reduced the symptoms of graft-versus-host disease (GVHD) in a humanized mouse model which led to significantly improved survival, less weight loss, and less histopathologic injuries of GVHD target organs compared with naive MSC-infused mice. Collectively, our study suggests that small-sized MSCs primed with hypoxia could advance the therapeutic strategy for the clinical treatment of allogeneic conflicts including GVHD.
Project description:Ocular GVHD (oGVHD), manifested by severe injury of corneal epithelial cells, meibomian and lacrimal glands' dysfunction, is a serious complication of systemic GVHD which develops as a consequence of donor T and natural killer cell-driven inflammation in the eyes of patients who received allogeneic hematopoietic stem cell transplantation. Mesenchymal stem cells (MSC) are, due to their enormous differentiation potential and immunosuppressive characteristics, considered as a potentially new remedy in ophthalmology. MSC differentiate in corneal epithelial cells, suppress eye inflammation, and restore meibomian and lacrimal glands' function in oGVHD patients. MSC-sourced exosomes (MSC-Exos) are extracellular vesicles that contain MSC-derived growth factors and immunoregulatory proteins. Due to the lipid membrane and nano-sized dimension, MSC-Exos easily by-pass all biological barriers in the eyes and deliver their cargo directly in injured corneal epithelial cells and eye-infiltrated leukocytes, modulating their viability and function. As cell-free agents, MSC-Exos address all safety issues related to the transplantation of their parental cells, including the risk of unwanted differentiation and aggravation of intraocular inflammation. In this review article, we summarized current knowledge about molecular mechanisms which are responsible for beneficial effects of MSC and MSC-Exos in the therapy of inflammatory eye diseases, emphasizing their therapeutic potential in the treatment of oGVHD.
Project description:Immunosuppressive ability in human MSC donors has been shown to be variable and may be a limiting factor in MSC therapeutic efficacy in vivo. The importance of cytokine activation of mesenchymal stromal cells (MSCs) to facilitate their immunosuppressive function is well established. This study sought to further understand the interactions between MSCs and the commonly used calcineurin inhibitor cyclosporine A (CsA). The existing literature regarding approaches that use MSCs and cyclosporine are conflicting regarding the effect of CsA on MSC potency and function. Here, we clearly demonstrate that when added at the same time as MSCs, CsA negatively affects MSC suppression of T cell proliferation. However, licencing MSCs with IFNγ before addition of CsA protects MSCs from this negative effect. Notably, adding CsA to MSCs after IFNγ pre-stimulation enhances MSC production of IDO. Mechanistically, we identified that CsA reduces SOCS1 expression to facilitate enhanced IDO production in IFNγ pre-stimulated MSCs. Importantly, CsA exposure to IFNγ pre-stimulated MSC before administration, significantly enhanced the potency of MSCs in a human relevant humanised mouse model of acute Graft versus Host Disease. In summary, this study identified a novel licencing strategy to enhance MSC potency in vitro and in vivo.