Project description:Testing and vaccination have been major components of the strategy for combating the ongoing COVID-19 pandemic. In this study, we have developed a quantitative anti-SARS-CoV-2 spike (S1) IgG antibody assay using a fingerstick dried blood sample. We evaluated the feasibility of using this high-throughput and quantitative anti-SARS-CoV-2 spike (S1) IgG antibody testing assay in vaccinated individuals. Fingerstick blood samples were collected and analyzed from 137 volunteers before and after receiving the Moderna or Pfizer mRNA vaccine. Anti-SARS-CoV-2 S1 IgG antibody could not be detected within the first 7 days after receiving the first vaccine dose, however, the assay reliably detected antibodies from day 14 onwards. In addition, no anti-SARS-CoV-2 nucleocapsid (N) protein IgG antibody was detected in any of the vaccinated or healthy participants, indicating that the anti-SARS-CoV-2 S1 IgG assay is specific for the mRNA vaccine-induced antibodies. The S1 IgG levels detected in fingerstick samples correlated with the levels found in venous blood plasma samples and with the efficacy of venous blood plasma samples in the plaque reduction neutralization test (PRNT). The assay displayed a limit of quantification (LOQ) of 0.59 μg/mL and was found to be linear in the range of 0.51-1000 μg/mL. Finally, its clinical performance displayed a Positive Percent Agreement (PPA) of 100% (95% CI: 0.89-1.00) and a Negative Percent Agreement (NPA) of 100% (95% CI: 0.93-1.00). In summary, the assay described here represents a sensitive, precise, accurate, and simple method for the quantitative detection and monitoring of post-vaccination anti-SARS-CoV-2 spike IgG responses.
Project description:ImportancePatients with cancer experience high rates of morbidity and mortality after SARS-CoV-2 infection. Immune response to mRNA-1273 vaccination across multiple cancer types and treatments remains to be established.ObjectiveTo quantitate antibody responses after mRNA-1273 vaccination among patients with solid tumors and hematologic cancer and to assess clinical and treatment factors associated with vaccine response.Design, setting, and participantsThis cohort study included patients with cancer who were aged 18 years or older, spoke English or Spanish, had received their first mRNA-1273 dose between January 12 and 25, 2021, and agreed to blood tests before and after vaccination.ExposuresReceipt of 1 and 2 mRNA-1273 SARS-CoV-2 vaccine doses.Main outcomes and measuresSeroconversion after each vaccine dose and IgG levels against SARS-CoV-2 spike protein obtained immediately before the first and second vaccine doses and 57 days (plus or minus 14 days) after the first vaccine dose. Cancer diagnoses and treatments were ascertained by medical record review. Serostatus was assessed via enzyme-linked immunosorbent assay. Paired t tests were applied to examine days 1, 29, and 57 SARS-CoV-2 antibody levels. Binding antibody IgG geometric mean titers were calculated based on log10-transformed values.ResultsThe 515 participants were a mean (SD) age of 64.5 (11.4) years; 262 (50.9%) were women; and 32 (6.2%) were Hispanic individuals and 479 (93.0%) White individuals; race and ethnicity data on 4 (0.7%) participants were missing. Seropositivity after vaccine dose 2 was 90.3% (465; 95% CI, 87.4%-92.7%) among patients with cancer, was significantly lower among patients with hematologic cancer (84.7% [255]; 95% CI, 80.1%-88.6%) vs solid tumors (98.1% [210]; 95% CI, 95.3%-99.5%), and was lowest among patients with lymphoid cancer (70.0% [77]; 95% CI, 60.5%-78.4%). Patients receiving a vaccination within 6 months after anti-CD20 monoclonal antibody treatment had a significantly lower seroconversion (6.3% [1]; 95% CI, 0.2%-30.2%) compared with those treated 6 to 24 months earlier (53.3% [8]; 95% CI, 26.6%-78.7%) or those who never received anti-CD20 treatment (94.2% [456]; 95% CI, 91.7%-96.1%). Low antibody levels after vaccination were observed among patients treated with anti-CD20 within 6 months before vaccination (GM, 15.5 AU/mL; 95% CI, 9.8-24.5 AU/mL), patients treated with small molecules (GM, 646.7 AU/mL; 95% CI, 441.9-946.5 AU/mL), and patients with low lymphocyte (GM, 547.4 AU/mL; 95% CI, 375.5-797.7 AU/mL) and IgG (GM, 494.7 AU/mL; 95% CI, 304.9-802.7 AU/mL) levels.Conclusions and relevanceThis cohort study found that the mRNA-1273 SARS-CoV-2 vaccine induced variable antibody responses that differed by cancer diagnosis and treatment received. These findings suggest that patients with hematologic cancer and those who are receiving immunosuppressive treatments may need additional vaccination doses.
Project description:Waning humoral immunity after mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a significant problem for public health. Breakthrough infection in hospitals over several months after vaccination has not been fully characterized, especially against the delta (B.1.617.2) variant. Here, we describe an outbreak in our hospital in September of 2021, mainly through serological evaluation of the breakthrough infection. This retrospective observational study was done at an emergency and acute care hospital with 204 beds and 486 staff members where most staff members (92.6%) had had their second BNT162b2 vaccination by May of 2021. The peri-infection anti-spike RBD protein IgG (anti-S IgG) titers (lowest values between 11 days before and 7 days after onset or diagnosis) of serum samples from the breakthrough-infected persons were quantified. We also logarithmically estimated the anti-S IgG titers during the exposure period in September of uninfected staff members from their samples collected in May and December 2021. Whole-genome sequencing was done on obtained samples. In this outbreak, twelve persons (ten inpatients and two staff members) were diagnosed with SARS-CoV-2 infection by Loop-Mediated Isothermal Amplification (LAMP) or RT-PCR, eight of whom had been vaccinated twice. Peri-infection anti-S IgG titers could be determined in seven of the eight breakthrough cases, with a geometric mean titer (GMT) of 1,034 AU/ml (95% confidence interval [CI], 398 to 2,686). Among 289 uninfected staff members with data from the two sampling points, the GMT of the estimated anti-S IgG titers during the exposure period in 51 staff members, who were working at the outbreak ward and potentially exposed but uninfected, and 238 other unexposed staff members were 1,458 AU/ml (95% CI, 1,196 to 1,777) and 1,628 AU/ml (95% CI, 1,500 to 1,766), respectively. All viruses from the eight samples for which whole-genome sequencing was available were identified as delta variants. Of the infected persons, one remained asymptomatic throughout the course of treatment, and eleven had an illness of mild to moderate severity, including ten who received monoclonal antibody cocktail (Casirivimab/imdevimab) therapy. Measurement and estimation of anti-spike antibody levels after SARS-CoV-2 vaccination would be helpful for evaluating the risk of breakthrough infection and for determining the necessity of booster vaccination.
Project description:Serological assays capable of measuring antibody responses induced by previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical tools in the response to the COVID-19 pandemic. In this study, we use bead-based multiplex assays to measure IgG and IgA antibodies and IgG avidity to five SARS-CoV-2 antigens (Spike (S), receptor-binding domain (RBD), Nucleocapsid (N), S subunit 2, and Membrane-Envelope fusion (ME)). These assays were performed in several cohorts of healthcare workers and nursing home residents, who were followed for up to eleven months after SARS-CoV-2 infection or up to six months after vaccination. Our results show distinct kinetic patterns of antibody quantity (IgG and IgA) and avidity. While IgG and IgA antibody levels waned over time, with IgA antibody levels waning more rapidly, avidity increased with time after infection or vaccination. These contrasting kinetic patterns allow for the estimation of time since previous SARS-CoV-2 infection. Including avidity measurements in addition to antibody levels in a classification algorithm for estimating time since infection led to a substantial improvement in accuracy, from 62% to 78%. The inclusion of antibody avidity in panels of serological assays can yield valuable information for improving serosurveillance during SARS-CoV-2 epidemics.
Project description:The concentration of SARS-CoV-2-specific serum antibodies, elicited by vaccination or infection, is a primary determinant of anti-viral immunity, which correlates with protection against infection and COVID-19. Serum samples were obtained from 25 897 participants and assayed for anti-SARS-CoV-2 spike protein RBD IgG antibodies. The cohort was composed of newly vaccinated BNT162b2 recipients, in the first month or 6 months after vaccination, COVID-19 patients and a general sample of the Israeli population. Antibody levels of BNT162b2 vaccine recipients were negatively correlated with age, with a prominent decrease in recipients over 55 years old, which was most significant in males. This trend was observable within the first month and 6 months after vaccination, while younger participants were more likely to maintain stable levels of serum antibodies. The antibody concentration of participants previously infected with SARS-CoV-2 was lower than the vaccinated and had a more complex, non-linear relation to age, sex and COVID-19 symptoms. Taken together, our data supports age and sex as primary determining factors for both the magnitude and durability of humoral response to SARS-CoV-2 infection and the COVID-19 vaccine. Our results could inform vaccination policies, prioritizing the most susceptible populations for repeated vaccination.
Project description:Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Project description:BackgroundThe first COVID-19 vaccines are being distributed to the general population. However, the shortage of doses is slowing down the goal of reaching herd immunity. The aim of the study was to verify whether previously SARS-CoV-2 infected subjects, a considerable portion of the population, should receive the same vaccination treatment of seronegative individuals.MethodsHealth-professionals either recovered from COVID-19 or never infected by SARS-CoV-2 were serologically tested at different time-points right before, and several days after, vaccination.ResultsPreviously infected individuals showed humoral immune responses, 21 days after the first dose, that was approximately 10-folds higher than the seronegative group 21 days after the second dose. Seropositivity persists for at least 11 months.ConclusionDuring a shortage of COVID-19 vaccine doses, previously SARS-CoV-2 infected individuals should be dispensed from the vaccination campaign. When dose availability returns to normality, injection of a single dose for seropositive individuals should be considered.
Project description:Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques.
Project description:IntroductionIn immunocompromised patients, SARS-CoV-2 mRNA vaccine has been used in Italy from the beginning of the vaccination campaign, but several studies have shown that the serological response of onco-hematological patients was reduced compared to healthy subjects, due to the state of immunosuppression because of both underlying disease and administered therapy.MethodsWe evaluated the association of anti-SARS-CoV-2 spike IgG titers in 215 hematological patients with clinical and demographic variables to verify if it was possible to identify predictive parameters of serological response, as well as using a control group, consisting of healthy health workers of San Carlo Hospital in Potenza. Anti-SARS-CoV2 IgG titers were evaluated after 30-45 days post second dose vaccine using chemiluminescent microparticle immunoassay technology.ResultsPatients with hematological malignancies, compared with the control arm, had both a mean concentration of anti-SARS-CoV-2 IgG significantly lower and a seroconversion rate numerically lower. All chronic lymphatic leukemia patients showed levels of antibody titer below the mean concentration, also in only clinical surveillance patients. Comparing serological response in hematological malignancies, only acute leukemia patients who were off therapy had the highest seroconversion rate among the patients' cohorts and a mean antibody concentration greater than the control arm. Patients treated with steroids and rituximab showed a lower level of anti-SARS-CoV-2 spike IgG. Differences in anti-spike IgG levels among chronic myeloid leukemia patients stratified according to tyrosine kinase inhibitor therapy and molecular response were observed, and they could have interesting implications on the evaluation of the effects of these drugs on the immune system, but having not reached statistical significance at the moment. The cohort of patients who received a stem cell transplant was very heterogeneous because it included different hematological malignancies and different types of transplant; however, a mean concentration of anti-SARS-CoV2 IgG greater than the control arm was reported. Indeed, among patients who performed a transplant for over 6 months only one had a spike IgG concentration below the cutoff.ConclusionsOur data confirm reduced serological response in hematological patients after anti-SARS-CoV-2 vaccination. However, we found a great diversity of SARS-CoV-2 antibody response according to types of pathologies and therapies.