Glutathione-S-transferase Fusion Protein Nanosensor.
Ontology highlight
ABSTRACT: Fusion protein tags are widely used to capture and track proteins in research and industrial bioreactor processes. Quantifying fusion-tagged proteins normally requires several purification steps coupled with classical protein assays. Here, we developed a broadly applicable nanosensor platform that quantifies glutathione-S-transferase (GST) fusion proteins in real-time. We synthesized a glutathione-DNA-carbon nanotube system to investigate glutathione-GST interactions via semiconducting single-walled carbon nanotube (SWCNT) photoluminescence. We found that SWCNT fluorescence wavelength and intensity modulation occurred specifically in response to GST and GST-fusions. The sensor response was dependent on SWCNT structure, wherein mod(n - m, 3) = 1 nanotube wavelength and intensity responses correlated with nanotube diameter distinctly from mod(n - m, 3) = 2 SWCNT responses. We also found broad functionality of this sensor to diverse GST-tagged proteins. This work comprises the first label-free optical sensor for GST and has implications for the assessment of protein expression in situ, including in imaging and industrial bioreactor settings.
SUBMITTER: Williams RM
PROVIDER: S-EPMC8266418 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA