Project description:Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Compared to cutaneous melanoma (CM), which mainly harbors BRAF or NRAS mutations, UM predominantly harbors GNAQ or GNA11 mutations. Although primary UM can be controlled locally, approximately 50% of patients still develop metastases. To date, there have been no standard therapeutic strategies for the prevention or treatment of metastases. Unfortunately, chemotherapy and targeted therapies only induce minimal responses in patients with metastatic UM, with a median survival time of only 4-5 months after metastasis detection. Immunotherapy agents, such as immune checkpoint inhibitors, have achieved pioneering outcomes in CM but have shown limited effects in UM. Researchers have explored several feasible checkpoints to identify options for future therapies. Cancer vaccines have shown little in the way of therapeutic benefit in patients with UM, and there are few ongoing trials providing favorable evidence, but adoptive cell transfer-related therapies seem promising and deserve further investigation. More recently, the immune-mobilizing monoclonal T-cell receptor against the cancer molecule tebentafusp showed impressive antitumor effects. Meanwhile, oncolytic viruses and small molecule inhibitors have also gained ground. This review highlights recent progress in burgeoning treatments and provides innovative insights on feasible strategies for the treatment of UM.
Project description:Currently approximately 10 million people die each year due to cancer, and cancer is the cause of every sixth death worldwide. Tremendous efforts and progress have been made towards finding a cure for cancer. However, numerous challenges have been faced due to adverse effects of chemotherapy, radiotherapy, and alternative cancer therapies, including toxicity to non-cancerous cells, the inability of drugs to reach deep tumor tissue, and the persistent problem of increasing drug resistance in tumor cells. These challenges have increased the demand for the development of alternative approaches with greater selectivity and effectiveness against tumor cells. Cancer immunotherapy has made significant advancements towards eliminating cancer. Our understanding of cancer-directed immune responses and the mechanisms through which immune cells invade tumors have extensively helped us in the development of new therapies. Among immunotherapies, the application of bacteria and bacterial-based products has promising potential to be used as treatments that combat cancer. Bacterial targeting of tumors has been developed as a unique therapeutic option that meets the ongoing challenges of cancer treatment. In comparison with other cancer therapeutics, bacterial-based therapies have capabilities for suppressing cancer. Bacteria are known to accumulate and proliferate in the tumor microenvironment and initiate antitumor immune responses. We are currently well-informed regarding various methods by which bacteria can be manipulated by simple genetic engineering or synthetic bioengineering to induce the production of anti-cancer drugs. Further, bacterial-based cancer therapy (BBCT) can be either used as a monotherapy or in combination with other anticancer therapies for better clinical outcomes. Here, we review recent advances, current challenges, and prospects of bacteria and bacterial products in the development of BBCTs.
Project description:Immunotherapy is crucial in fighting cancer and achieving successful remission. Many novel strategies have recently developed, but there are still some obstacles to overcome before we can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates meticulously designed delivery methods with no loss or superior homing onto cancer environments, as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent advances in cancer immunotherapy delivery techniques, as well as their future prospects.
Project description:Nanoparticles (NPs) have been increasingly studied for radiosensitization. The principle of NPs radio-enhancement is to use high-atomic number NPs (e.g. gold, hafnium, bismuth and gadolinium) or deliver radiosensitizing substances, such as cisplatin and selenium. Nowadays, cancer immunotherapy is emerged as a promising treatment and immune checkpoint regulation has a potential property to improve clinical outcomes in cancer immunotherapy. Furthermore, NPs have been served as an ideal platform for immunomodulator system delivery. Owing to enhanced permeability and retention (EPR) effect, modified-NPs increase the targeting and retention of antibodies in target cells. The purpose of this review is to highlight the latest progress of nanotechnology in radiotherapy (RT) and immunotherapy, as well as combining these three strategies in cancer treatment. Overall, nanomedicine as an effective strategy for RT can significantly enhance the outcome of immunotherapy response and might be beneficial for clinical transformation.
Project description:Interleukin-13 receptor subunit alpha-2 (IL-13Rα2, CD213A), a high-affinity membrane receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer, adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence demonstrates IL-13 can signal through IL-13Rα2 in human cells. In addition, expression of IL-13Rα2 and IL-13Rα2-mediated signaling has been shown to promote tumor proliferation, cell survival, tumor progression, invasion, and metastasis. Given its differential expression in tumor versus normal tissue, IL-13Rα2 is an attractive immunotherapy target, as both a targetable receptor and an immunogenic antigen. Multiple promising strategies, including immunotoxins, cancer vaccines, and chimeric antigen receptor (CAR) T cells, have been developed to target IL-13Rα2. In this mini-review, we discuss recent developments surrounding IL-13Rα2-targeted therapies in pre-clinical and clinical study, including potential strategies to improve IL-13Rα2-directed cancer treatment efficacy.
Project description:BackgroundThe main goal of anti-cancer therapy is to specifically inhibit the malignant activity of cancer cells, while leaving healthy cells unaffected. As such, for every proposed therapy, it is important to keep in mind the therapeutic index - the ratio of the toxic dose over the therapeutic dose. The use of immunotherapy has allowed a means to both specifically block protein-protein interaction and deliver cytotoxic events to a tumor-specific antigen.Review scopeIt is the objective of this review to give an overview on current immunotherapy treatment for cancers using monoclonal antibodies. We demonstrate three exciting targets for immunotherapy, TNF-α Converting Enzyme (TACE), Cathepsin S and Urokinase Plasmogen Activator and go over the advances made with one of the most used monoclonal antibodies in cancer therapy, Rituximab; as well as Herceptin, which is used for breast cancer therapy. Furthermore, we touch on other venues of immunotherapy, such as adaptive cell transfer, the use of nucleic acids and the use of dendritic cells. Finally, we summarize some ongoing studies that spell tentative advancements for anti-cancer immunotherapy.General significanceImmunotherapy is at the forefront of anti-cancer therapies, allying both a high degree of specificity to general high effectiveness and fewer side-effects.
Project description:Since the approval of sipuleucel-T for men with metastatic castrate resistant prostate cancer in 2010, great strides in the development of anti-cancer immunotherapies have been made. Current drug development in this area has focused primarily on antigen-specific (i.e. cancer vaccines and antibody based therapies) or checkpoint inhibitor therapies, with the checkpoint inhibitors perhaps gaining the most attention as of late. Indeed, drugs blocking the inhibitory signal generated by the engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) found on T-cells has emerged as potent means to combat the immunosuppressive milieu. The anti-CTLA-4 monoclonal antibody ipilimumab has already been approved in advanced melanoma and two phase III trials evaluating ipilimumab in men with metastatic castrate-resistant prostate cancer are underway. A phase III trial evaluating ProstVac-VF, a poxvirus-based therapeutic prostate cancer vaccine, is also underway. While there has been reason for encouragement over the past few years, many questions regarding the use of immunotherapies remain. Namely, it is unclear what stage of disease is most likely to benefit from these approaches, how best to incorporate said treatments with each other and into our current treatment regimens and which therapy is most appropriate for which disease. Herein we review some of the recent advances in immunotherapy as related to the treatment of prostate cancer and outline some of the challenges that lie ahead.
Project description:Epithelial ovarian cancer (EOC) is the most lethal gynaecological cancer. Although many advances have been made in therapeutic strategies, the global standard of care still remains radical surgery plus chemotherapy, but new scenarios need to be explored to improve survival. The role of immunotherapy in EOC treatment is controversial. Results obtained from studies evaluating immunotherapy are contradictory: in particular data on survival are not as good as expected when immunotherapy was administered alone, and other data are still immature. Thus, significant efforts must be devoted to finding new strategies for the use of immunotherapy. The aim of this paper is to review the most recent findings of the use of immunotherapy in ovarian cancer, with a particular focus on combination approaches.
Project description:BackgroundSeveral accomplishments have been achieved in triple-negative breast cancer (TNBC) research over the last year. The phase III IMpassion130 trial comparing chemotherapy plus atezolizumab versus chemotherapy plus placebo brought breast cancer into the immunotherapy era. Nevertheless, despite encouraging results being obtained in this trial, many open questions remain.Main bodyA positive overall survival outcome was achieved only in PD-L1+ TNBC patients, suggesting a need to enrich the patient population more likely to benefit from an immunotherapeutic approach. Moreover, it remains unknown whether single-agent immunotherapy might be a good option for some patients. In this context, the discovery and implementation of novel and appropriate biomarkers are required. Focusing on the early onset of TNBC, neoadjuvant trials could represent excellent in vivo platforms to test immunotherapy agents and their potential combinations, allowing the performance of translational studies for biomarker implementation and improved patient selection.ConclusionThe aim of our review is to present recent advances in TNBC treatment and to discuss open issues in order to better define potential future directions for immunotherapy in TNBC.
Project description:Among various immunotherapies, natural killer (NK) cell cancer immunotherapy using adoptive transfer of NK cells takes a unique position by targeting tumor cells that evade the host immune surveillance. As the first-line innate effector cell, it has been revealed that NK cells have distinct mechanisms to both eliminate cancer cells directly and amplify the anticancer immune system. Over the last 40 years, NK cell cancer immunotherapy has shown encouraging reports in pre-clinic and clinic settings. In total, 288 clinical trials are investigating various NK cell immunotherapies to treat hematologic and solid malignancies in 2021. However, the clinical outcomes are unsatisfying, with remained challenges. The major limitation is attributed to the immune-suppressive tumor microenvironment (TME), low activity of NK cells, inadequate homing of NK cells, and limited contact frequency of NK cells with tumor cells. Innovative strategies to promote the cytolytic activity, durable persistence, activation, and tumor-infiltration of NK cells are required to advance NK cell cancer immunotherapy. As maturing nanotechnology and nanomedicine for clinical applications, there is a greater opportunity to augment NK cell therapeutic efficacy for the treatment of cancers. Active molecules/cytokine delivery, imaging, and physicochemical properties of nanoparticles are well equipped to overcome the challenges of NK cell cancer immunotherapy. Here, we discuss recent clinical trials of NK cell cancer immunotherapy, NK cell cancer immunotherapy challenges, and advances of nanoparticle-mediated NK cell therapeutic efficacy augmentation.