Whole-Exome Sequencing to Identify Potential Genetic Risk in Substance Use Disorders: A Pilot Feasibility Study.
Ontology highlight
ABSTRACT: Genetics intersects with environmental, cultural, and social factors in the development of addictive disorders. This study reports the feasibility of whole-exome sequencing of trios (subject and two family members) to discover potential genetic variants in the development of substance use disorders (SUD). Family trios were recruited from the National Addictions Management Service in Singapore during the 2016-2018 period. Recruited subjects had severe alcohol use disorder (AUD) or opioid use disorder (OUD), with nicotine dependence (ND) and a family history of addictive disorders. Demographic characteristics and severity of addiction were captured. Whole-exome sequencing (WES) and analysis were performed on salivary samples collected from the trios. WES revealed variants in several genes in each individual and disruptive protein mutations in most. Variants were identified in genes previously associated with SUDs, such as Pleckstrin homology domain-containing family M member 3 (PLEKHM3), coiled-coil serine-rich protein 1 (CCSER1), LIM and calponin homology domains-containing protein 1 (LIMCH1), dynein axonemal heavy chain 8 (DNAH8), and the taste receptor type 2 member 38 (TAS2R38) involved in the perception of bitterness. The feasibility study suggests that subjects with a severe addiction profile, polysubstance use, and family history of addiction may often harbor gene variants that may predispose them to SUDs. This study could serve as a model for future precision medicine-based personalized interventional strategies for behavioral addictions and SUDs and for the discovery of potentially pathogenic genetic variants.
SUBMITTER: AshaRani PV
PROVIDER: S-EPMC8269170 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA