ABSTRACT: The genus Acinetobacter comprises species with ecological significance and opportunistic pathogens and has a complicated taxonomy. Precise species identification is a foundation for understanding bacteria. In this study, we found and characterized two novel Acinetobacter species, namely, Acinetobacter tianfuensis sp. nov. and Acinetobacter rongchengensis sp. nov., based on phenotype examinations and genome analyses of the two strains WCHAc060012T and WCHAc060115T. The two strains had ≤89.69% (mean, 79.28% or 79.72%) average nucleotide identity (ANI) and ≤36.4% (mean, 20.89% or 22.19%) in silico DNA-DNA hybridization (isDDH) values compared with each other and all known Acinetobacter species. Both species can be differentiated from all hitherto known Acinetobacter species by a combination of phenotypic characteristics. We found that Acinetobacter pullorum B301T and Acinetobacter portensis AC 877T are actually the same species with 98.59% ANI and 90.4% isDDH values. We then applied the updated taxonomy to curate 3,956 Acinetobacter genomes in GenBank and found that 6% of Acinetobacter genomes (n = 234) are required to be corrected or updated. We identified 56 novel tentative Acinetobacter species, extending the number of Acinetobacter species to 144, including 68 with species names and 76 unnamed taxa. We also found that ANI and the average amino acid identity (AAI) values among type or reference strains of all Acinetobacter species and taxa are ≥76.97% and ≥66.5%, respectively, which are higher than the proposed cutoffs to define the genus boundary. This study highlights the complex taxonomy of Acinetobacter as a single genus and the paramount importance of precise species identification. The newly identified unnamed taxa warrant further studies. IMPORTANCE Acinetobacter species are widely distributed in nature and are of important ecological significance and clinical relevance. In this study, first, we significantly update the taxonomy of Acinetobacter by reporting two novel Acinetobacter species, namely, Acinetobacter tianfuensis and Acinetobacter rongchengensis, and by identifying Acinetobacter portensis as a synonym of Acinetobacter pullorum. Second, we curated Acinetobacter genome sequences deposited in GenBank (n = 3,956) using the updated taxonomy by correcting species assignations for 6% (n = 234) genomes and by assigning 94 (2.4%) to 56 previously unknown tentative species (taxa). Therefore, after curation, we further update the genus Acinetobacter to comprise 144 species, including 68 with species names and 76 unnamed taxa. Third, we addressed the question of whether such a large number of species should be divided in different genera and found that Acinetobacter is indeed a single genus. Our study significantly advanced the taxonomy of Acinetobacter, an important genus with science and health implications.