Project description:Any combination of metabolic abnormalities may constitute the metabolic syndrome (MetS), conferring coronary artery disease (CAD) risk, but the independent effect of different combinations on CAD onset remains unknown. RESEARCH DESIGN AND METHODS" Healthy adult siblings (n = 987) of premature CAD (<60 years) case subjects were followed for 9.8 +/- 3.8 years. Baseline MetS variables (insulin sensitivity index, waist circumference, systolic blood pressure, HDL cholesterol, and triglycerides) were recombined into five principal components (PC1-5), and risk factor-adjusted proportional hazards for CAD onset of median-dichotomized PCs were estimated.The significant hazard ratios were as follows: for PC1 (all abnormalities except blood pressure) 1.66 (P = 0.036), PC2 (high blood pressure levels, high HDL cholesterol) 1.71 (P = 0.016), and PC4 (low HDL cholesterol, high insulin sensitivity, low triglycerides) 2.0 (P = 0.001). Traditionally defined MetS had a hazard ratio of 1.32 (P = 0.18).Independent MetS variants identified by PC analysis may explain metabolic mechanisms that increase CAD risk better than the presence of traditional MetS.
Project description:BACKGROUND/AIM:Cardiovascular diseases are a leading cause of mortality and morbidity worldwide. Polymorphisms in the SCARB1 gene are known to be related to plasma lipids. PATIENTS AND METHODS:Real time-polymerase chain reaction (RT-PCR) was used for identification of SCARB1 polymorphisms and the Lipoprint Quantimetrix System was employed in identification of HDL subfractions. RESULTS:According to allelic distribution, in both groups SCARB1 AA genotype led to a two-fold decrease in the risk of developing cardiovascular disease (p=0.04), while the GA genotype increased the risk two-fold (p=0.03). According to the HDL subfraction analysis results, the AA genotype had higher levels of big-sized HDL subfraction (p=0.02). CONCLUSION:The SCARB1AA genotype decreased cardiovascular risk and carrying GA genotype and G allele increased the risk of CAD. AA genotype carriers had higher levels of big-sized HDL subfraction.
Project description:The transcription factor GATA2 plays an essential role in the establishment and maintenance of adult hematopoiesis. It is expressed in hematopoietic stem cells, as well as the cells that make up the aortic vasculature, namely aortic endothelial cells and smooth muscle cells. We have shown that GATA2 expression is predictive of location within the thoracic aorta; location is suggested to be a surrogate for disease susceptibility. The GATA2 gene maps beneath the Chromosome 3q linkage peak from our family-based sample set (GENECARD) study of early-onset coronary artery disease. Given these observations, we investigated the relationship of several known and novel polymorphisms within GATA2 to coronary artery disease. We identified five single nucleotide polymorphisms that were significantly associated with early-onset coronary artery disease in GENECARD. These results were validated by identifying significant association of two of these single nucleotide polymorphisms in an independent case-control sample set that was phenotypically similar to the GENECARD families. These observations identify GATA2 as a novel susceptibility gene for coronary artery disease and suggest that the study of this transcription factor and its downstream targets may uncover a regulatory network important for coronary artery disease inheritance.
Project description:Background Coronary artery disease (CAD) is a multi-factor complex trait and is heritable, especially in early-onset families. However, the genetic factors affecting the susceptibility of early-onset CAD are not fully characterized. Methods In the present study, we identified a rare nonsense variant in the CYP17A1 gene from a Chinese Han family with CAD. To validate the effect of this variation on atherosclerosis and early-onset coronary artery disease, we conducted studies on population, cells, and mice. Results The mutation precisely congregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Similar to the human phenotype, the CYP17A1-deficient mice present the phenotype of metabolic syndrome with hypertension, increased serum glucose concentration, and presentation of central obesity and fatty liver. Furthermore, CYP17A1 knockout mice or CYP17A1 + ApoE double knockout mice developed more atherosclerotic lesions than wild type (WT) with high fat diary. In cell models, CYP17A1 was found to be involved in glucose metabolism by increasing glucose intake and utilization, through activating IGF1/mTOR/HIF1-α signaling way, which was consistent in CYP17A1 knockout mice with impaired glucose tolerance and insulin resistance. Conclusions Through our study of cells, mice and humans, we identified CYP17A1 as a key protein participating in the pathophysiology of the atherosclerotic process and the possible mechanism of CYP17A1 C987X mutation induced atherosclerosis and early-onset CAD involving glucose homeostasis regulation was revealed. Video Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s12964-023-01061-z.
Project description:BACKGROUND:The relation between burden of risk factors, familial coronary artery disease (CAD), and known genetic variants underlying CAD and low-density lipoprotein cholesterol (LDL-C) levels is not well-explored in clinical samples. We aimed to investigate the association of these measures with age at onset of CAD requiring revascularizations in a clinical sample of patients undergoing first-time coronary angiography. METHODS:1599 individuals (mean age 64 years [min-max 29-96 years], 28% women) were genotyped (from blood drawn as part of usual clinical care) in the Copenhagen area (2010-2014). The burden of common genetic variants was measured as aggregated genetic risk scores (GRS) of single nucleotide polymorphisms (SNPs) discovered in genome-wide association studies. RESULTS:Self-reported familial CAD (prevalent in 41% of the sample) was associated with -3.2 years (95% confidence interval -4.5, -2.2, p<0.0001) earlier need of revascularization in sex-adjusted models. Patients with and without familial CAD had similar mean values of CAD-GRS (unweighted scores 68.4 vs. 68.0, p = 0.10, weighted scores 67.7 vs. 67.5, p = 0.49) and LDL-C-GRS (unweighted scores 58.5 vs. 58.3, p = 0.34, weighted scores 63.3 vs. 61.1, p = 0.41). The correlation between the CAD-GRS and LDL-C-GRS was low (r = 0.14, p<0.001). In multivariable adjusted regression models, each 1 standard deviation higher values of LDL-C-GRS and CAD-GRS were associated with -0.70 years (95% confidence interval -1.25, -0.14, p = 0.014) and -0.51 years (-1.07, 0.04, p = 0.07) earlier need for revascularization, respectively. CONCLUSIONS:Young individuals presenting with CAD requiring surgical interventions had a higher genetic burden of SNPs relating to LDL-C and CAD (although the latter was statistically non-significant), compared with older individuals. However, the absolute difference was modest, suggesting that genetic screening can currently not be used as an effective prediction tool of when in life a person will develop CAD. Whether undiscovered genetic variants can still explain a "missing heritability" in early-onset CAD warrants more research.
Project description:BackgroundGenome-wide linkage analysis revealed the polymorphism of rs6748040 and glutamic acid repeat are potential pathogenic factors of early-onset myocardial infarction (MI). The present study was designed to investigate the associations of Alström syndrome 1 (ALMS 1) gene in Chinese populations with early-onset coronary artery disease (CAD).MethodsThe two variants of the ALMS 1 gene were genotyped in 1252 early-onset CAD patients and 1378 controls using PCR, followed by Sml I restriction enzyme digestion or direct sequencing of the PCR product. The associations were estimated using the odds ratio (OR) and the 95% confidence interval (CI).ResultsA significant association between the ALMS 1 G/A variant and the risk of early-onset MI was detected in G vs.A (OR = 1.371, 95% CI: 1.183-1.589), GG vs. AA (OR = 2.037, 95% CI: 1.408-2.948), dominant genetic model (OR = 1.794, 95% CI: 1.254-2.567), and recessive genetic model (OR = 1.421, 95% CI: 1.177-1.716). 14 glutamic acid repeat (A14) is risk factor for early-onset MI (OR = 1.605, 95% CI: 1.313-1.962) and 17 glutamic acid repeat (A17) is protective factor for the disease (OR = 0.684, 95% CI: 0.601-0.827). These associations were not detected in early-onset CAD patients.ConclusionsOur findings indicated that G/A variant (rs6748040) and glutamic acid repeat polymorphism of the ALMS 1 gene associated with the risk of early-onset MI in the Chinese population.
Project description:The burden of cardiovascular disease (CVD) cannot be fully addressed by therapy targeting known pathophysiological pathways. Even with stringent control of all risk factors CVD events are only diminished by half. A number of additional pathways probably play a role in the development of CVD and might serve as novel therapeutic targets. Genome wide expression studies represent a powerful tool to identify such novel pathways. We compared the expression profiles in monocytes from twenty two young male patients with premature familial CAD with those from controls matched for age, sex and smoking status, without a family history of CVD. Since all patients were on statins and aspirin treatment, potentially affecting the expression of genes in monocytes, twelve controls were subsequently treated with simvastatin and aspirin for 6 and 2 weeks, respectively. By whole genome expression arrays six genes were identified to have differential expression in the monocytes of patients versus controls; ABCA1, ABCG1 and RGS1 were downregulated in patients, whereas ADRB2, FOLR3 and GSTM1 were upregulated. Differential expression of all genes, apart from GSTM1, was confirmed by qPCR. Aspirin and statins altered gene expression of ABCG1 and ADBR2. All finding were validated in a second group of twenty four patients and controls. Differential expression of ABCA1, RSG1 and ADBR2 was replicated. In conclusion, we identified these 3 genes to be expressed differently in CAD cases which might play a role in the pathogenesis of atherosclerotic vascular disease.
Project description:The first genome-wide association study for coronary artery disease (CAD) in the Han Chinese population, we reported recently, had identified rs6903956 in gene ADTRP on chromosome 6p24.1 as a novel susceptibility locus for CAD. The risk allele of rs6903956 was associated with decreased mRNA expression of ADTRP. To further study the correlation of ADTRP expression and CAD, in this study we evaluated the associations of eight common variants in the expression-regulating regions of ADTRP with CAD in the Southern Han Chinese population. Rs169790 in 3'UTR, rs2076189 in 5'UTR, four SNPs (rs2076188, rs7753407, rs11966356 and rs1018383) in promoter, and two SNPs (rs3734273, rs80355771) in the last intron of ADTRP were genotyped in 1716 CAD patients and 1572 controls. The correlations between these loci and total or early-onset CAD were investigated. None of these loci was discovered to associate with total CAD (P > 0.05). However, with early-onset CAD, significant both allelic and genotypic associations of rs7753407, rs11966356 and rs1018383 were identified, after adjustment for risk factors of age, gender, hypertension, diabetes, lipid profiles and smoking (adjusted P < 0.05). A haplotype AGCG (constructed by rs2076188, rs7753407, rs11966356 and rs1018383) was identified to protect subjects from early-onset CAD (OR = 0.332, 95% CI = 0.105-0.879, adjusted P = 0.010). Real-time quantitative reverse transcription polymerase chain reaction assay showed that the risk alleles of the associated loci were significantly associated with decreased expression of ADTRP mRNA. Moreover, the average level of ADTRP mRNA expression in early-onset CAD cases was significantly lower than that in controls. Our results provide new evidence supporting the association of ADTRP with the pathogenesis of early-onset CAD.
Project description:Genetic variations were successfully associated among patients with coronary artery disease using Illumina Cardiometabochip containing 1,96,725 SNPs Illumina Cardio-metabochip is a custom designed SNP microarray containing 1,96,725 SNPs designed by several GWAS and consortia
Project description:DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.