Project description:BackgroundDifferences in immunogenicity between mRNA SARS-CoV-2 vaccines have not been well characterized in patients undergoing dialysis. We compared the serologic response in patients undergoing maintenance hemodialysis after vaccination against SARS-CoV-2 with BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna).MethodsWe conducted a prospective observational cohort study at 2 academic centres in Toronto, Canada, from Feb. 2, 2021, to July 20, 2021, which included 129 and 95 patients who received the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines, respectively. We measured SARS-CoV-2 immunoglobulin G antibodies to the spike protein (anti-spike), receptor binding domain (anti-RBD) and nucleocapsid protein (anti-NP) at 6-7 and 12 weeks after the second dose of vaccine and compared those levels with the median convalescent serum antibody levels from 211 controls who were previously infected with SARS-CoV-2.ResultsAt 6-7 weeks after 2-dose vaccination, we found that 51 of 70 patients (73%) who received BNT162b2 and 83 of 87 (95%) who received mRNA-1273 attained convalescent levels of anti-spike antibody (p < 0.001). In those who received BNT162b2, 35 of 70 (50%) reached the convalescent level for anti-RBD compared with 69 of 87 (79%) who received mRNA-1273 (p < 0.001). At 12 weeks after the second dose, anti-spike and anti-RBD levels were significantly lower in patients who received BNT162b2 than in those who received mRNA-1273. For anti-spike, 70 of 122 patients (57.4%) who received BNT162b2 maintained the convalescent level versus 68 of 71 (96%) of those who received mRNA-1273 (p < 0.001). For anti-RBD, 47 of 122 patients (38.5%) who received BNT162b2 maintained the anti-RBD convalescent level versus 45 of 71 (63%) of those who received mRNA-1273 (p = 0.002).InterpretationIn patients undergoing hemodialysis, mRNA-1273 elicited a stronger humoral response than BNT162b2. Given the rapid decline in immunogenicity at 12 weeks in patients who received BNT162b2, a third dose is recommended in patients undergoing dialysis as a primary series, similar to recommendations for other vulnerable populations.
Project description:Real-world analysis of the incidence of SARS-CoV-2 infection post vaccination is important in determining the comparative effectiveness of the available vaccines. In this retrospective cohort study using deidentified administrative claims for Medicare Advantage and commercially insured individuals in a research database we examine over 3.5 million fully vaccinated individuals, including 8,848 individuals with SARS-CoV-2 infection, with a follow-up period between 14 and 151 days after their second dose. Our primary outcome was the rate of Covid-19 infection occurring at 30, 60, and 90 days at least 14 days after the second dose of either the mRNA-1273 vaccine or the BNT162b2 vaccine. Sub-analyses included the incidence of hospitalization, ICU admission, and death/hospice transfer. Separate analysis was conducted for individuals above and below age 65 and those without a prior diagnosis of Covid-19. We show that immunization with mRNA-1273, compared to BNT162b2, provides slightly more protection against SARS-CoV-2 infection that reaches statistical significance at 90 days with a number needed to vaccinate of >290. There are no differences in vaccine effectiveness for protection against hospitalization, ICU admission, or death/hospice transfer (aOR 1.23, 95% CI (0.67, 2.25)).
Project description:The design of Pfizer/BioNTech and Moderna mRNA vaccines involves many different types of optimizations. Proper optimization of vaccine mRNA can reduce dosage required for each injection leading to more efficient immunization programs. The mRNA components of the vaccine need to have a 5'-UTR to load ribosomes efficiently onto the mRNA for translation initiation, optimized codon usage for efficient translation elongation, and optimal stop codon for efficient translation termination. Both 5'-UTR and the downstream 3'-UTR should be optimized for mRNA stability. The replacement of uridine by N1-methylpseudourinine (Ψ) complicates some of these optimization processes because Ψ is more versatile in wobbling than U. Different optimizations can conflict with each other, and compromises would need to be made. I highlight the similarities and differences between Pfizer/BioNTech and Moderna mRNA vaccines and discuss the advantage and disadvantage of each to facilitate future vaccine improvement. In particular, I point out a few optimizations in the design of the two mRNA vaccines that have not been performed properly.
Project description:Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Project description:Immune thrombocytopenia is an autoimmune disease that can cause bleeding in severe cases. Although available published data do not associate the BNT162b2 vaccine (Pfizer-BioNTech) with the risk of developing thrombocytopenia, the ChAdOx1 nCov-19 vaccine has raised concerns about its potential link with thrombosis and thrombocytopenia. We would like to clarify whether the BNT162b2 vaccine administration may interfere with pre-existing conditions and whether it may cause a risk of thrombocytopenia. Herein, we report three cases of post-vaccine thrombocytopenia among patients with rheumatoid arthritis (RA); one case in which a causal relationship cannot be ruled out with the BNT162b2 vaccine was officially announced. Furthermore, we reviewed reports of adverse events and death cases with a focus on thrombocytopenia and hemorrhages, following vaccination with BNT162b2 in Japan between February 17, 2021 and July 16, 2021, as reported by the Ministry of Health, Labour, and Welfare within the general population. The three cases in this report share the common features of old age, RA, chronic renal failure or hypertension, and pre-existing mild thrombocytopenia at baseline. A total of 746 death cases were reported during this time period, with death by bleeding accounting for 8.8% of the total deaths, of which 84.8% were cranial and statistically higher in young women than among elderly women. The risk-benefit ratio of the vaccine needs to be reconsidered based on high- and low-risk population types and ethnicity. To do so, the expansion of the pharmacovigilance system for BNT162b2 vaccination is urgently required worldwide.
Project description:BackgroundmRNA COVID-19 vaccines manufactured by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) have been shown to be efficacious but have not been compared in head-to-head clinical trials.MethodsWe designed this observational study to emulate a target trial of COVID-19 vaccination by BNT162b2 versus mRNA-1273 among persons who underwent vaccination in the national U.S. Veterans Affairs (VA) healthcare system from 11/12/2020 to 25/03/2021 using combined VA and Medicare electronic health records. We identified the best matching mRNA-1273 recipient(s) for each BNT162b2 recipient, using exact/coarsened-exact matching (calendar week, VA integrated service network, age buckets and Charlson comorbidity index buckets) followed by propensity score matching. Vaccine recipients were followed from the date of first vaccine dose until 25/08/2021 for the development of SARS-CoV-2 infection, SARS-CoV-2-related hospitalization or SARS-CoV-2-related death.FindingsEach group included 902,235 well-matched vaccine recipients, followed for a mean of 192 days, during which 16,890 SARS-CoV-2 infections, 3591 SARS-CoV-2-related hospitalizations and 381 SARS-CoV-2-related deaths were documented. Compared to BNT162b2, mRNA-1273 recipients had significantly lower risk of SARS-CoV-2 infection (adjusted hazard ratio [aHR] 0.736, 95% CI 0.696-0.779) and SARS-CoV-2-related hospitalization (aHR 0.633, 95% CI 0.562-0.713), which persisted across all age groups, comorbidity burden categories and black/white race. The differences between mRNA-1273 and BNT162b2 in risk of infection or hospitalization were progressively greater when the follow-up period was longer, i.e. extending to March 31, June 30 or August 25, 2021. These differences were more pronounced when we analyzed separately the outcomes that occurred during the follow-up period from July 1 to August 25, 2021 when the Delta variant became predominant in the U.S. (aHR for infection 0.584, 95% CI 0.533-0.639 and aHR for hospitalization 0.387, 95% 0.311-0.482). SARS-CoV-2-related deaths were less common in mRNA-1273 versus BNT162b2 recipients (168 versus 213) but this difference was not statistically significant (aHR 0.808, 95% CI 0.592-1.103).InterpretationIn conclusion, although absolute rates of infection, hospitalization and death in both vaccine groups were low regardless of the vaccine received, our data suggests that compared to BNT162b2, vaccination with mRNA-1273 resulted in significantly lower rates of SARS-CoV-2-infection and SARS-CoV-2-related hospitalization. These differences were greater with longer follow-up time since vaccination and even more pronounced in the Delta variant era.FundingU.S. Department of Veterans Affairs, grant numbers COVID19-8900-11 and C19 21-278.
Project description:BackgroundAn association between thrombotic events and SARS-CoV-2 infection and the adenovirus-based COVID-19 vaccines has been established, leading to concern over the risk of thrombosis after BNT162b2 COVID-19 vaccination.ObjectivesTo evaluate the risk of arterial thrombosis, cerebral venous thrombosis (CVT), splanchnic thrombosis, and venous thromboembolism (VTE) following BNT162b2 vaccination in New Zealand.MethodsThis was a self-controlled case series using national hospitalisation and immunisation records to calculate incidence rate ratios (IRR). The study population included individuals aged ≥12 years, unvaccinated, or vaccinated with BNT162b2, who were hospitalised with one of the thrombotic events of interest from 19 February 2021 through 19 February 2022. The risk period was 0-21 days after receiving a primary or booster dose of BNT162b2.Results6039 individuals were hospitalised with one of the thrombotic events examined, including 5127 with VTE, 605 with arterial thrombosis, 272 with splanchnic thrombosis, and 35 with CVT. The proportion of individuals vaccinated with at least one dose of BNT162b2 ranged from 82.7 % to 91.4 %. Compared with the control unexposed period, the IRR (95 % CI) of VTE, arterial thrombosis, splanchnic thrombosis, and CVT were 0.87 (0.76-1.00), 0.73 (0.56-0.95), 0.71 (0.43-1.16), and 0.87 (0.31-2.50) in the 21 days after BNT162b2 vaccination, respectively. There was no statistically significant increased risk of thrombosis following BNT162b2 in different ethnic groups in New Zealand.ConclusionThe BNT162b2 vaccine was not found to be associated with thrombosis in the general population or different ethnic groups in New Zealand, providing reassurance for the safety of the BNT162b2 vaccine.