Unknown

Dataset Information

0

The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, causes the coronavirus disease 19 pandemic. During the viral replication and transcription, the RNA-dependent RNA polymerase "jumps" along the genome template, resulting in discontinuous negative-stranded transcripts. Although the sense-mRNA architectures of SARS-CoV-2 were reported, its negative strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand with variable transcription efficiency for different genes. During negative strand synthesis, numerous non-canonical fusion transcripts are also formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the antiviral vaccine development and drug design.

SUBMITTER: Zhao Y 

PROVIDER: S-EPMC8277956 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8009100 | biostudies-literature
2021-06-27 | GSE160668 | GEO
| S-EPMC7853532 | biostudies-literature
| S-EPMC8491895 | biostudies-literature
2021-02-02 | GSE165955 | GEO
| S-EPMC8204756 | biostudies-literature
| S-SCDT-10_15252-EMMM_202216351 | biostudies-other
| S-EPMC7804290 | biostudies-literature
| S-BSST379 | biostudies-other
| S-EPMC7340027 | biostudies-literature