Project description:We characterize the overall incidence and risk factors for breakthrough infection among fully vaccinated participants in the North Carolina COVID-19 Community Research Partnership cohort. Among 15,808 eligible participants, 638 reported a positive SARS-CoV-2 test after vaccination. Factors associated with a lower risk of breakthrough in the time-to-event analysis included older age, prior SARS-CovV-2 infection, higher rates of face mask use, and receipt of a booster vaccination. Higher rates of breakthrough were reported by participants vaccinated with BNT162b2 or Ad26.COV2.S compared to mRNA-1273, in suburban or rural counties compared to urban counties, and during circulation of the Delta and Omicron variants.
Project description:Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3-4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen.
Project description:Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing. Viral sequencing revealed variants of likely clinical importance, including E484K in 1 woman and three mutations (T95I, del142-144, and D614G) in both. These observations indicate a potential risk of illness after successful vaccination and subsequent infection with variant virus, and they provide support for continued efforts to prevent and diagnose infection and to characterize variants in vaccinated persons. (Funded by the National Institutes of Health and others.).
Project description:This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.
Project description:The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Project description:IntroductionSARS-CoV-2 vaccination is the leading strategy to prevent severe courses after SARS-CoV-2 infection. In our study, we analyzed humoral and cellular immune responses in detail to three consecutive homologous or heterologous SARS-CoV-2 vaccinations and breakthrough infections.MethodsPeripheral blood samples of n=20 individuals were analyzed in the time course of three SARS-CoV-2 vaccinations and/or breakthrough infection. S1-, RBD-, S2- and N-specific IgG antibodies were quantified using Luminex-based multiplex assays and electrochemiluminescence multiplex assays for surrogate neutralization in plasma. Changes in cellular immune components were determined via flow cytometry of whole blood samples.ResultsAll individuals (n=20) responded to vaccination with increasing S1-/RBD-/S2-specific IgG levels, whereas specific plasma IgA displayed individual variability. The third dose increased antibody inhibitory capacity (AIC) against immune-escape variants Beta and Omicron BA.1 independently of age. The mRNA-primed vaccination induced IgG and IgA immunity more efficiently, whereas vector-primed individuals displayed higher levels of memory T and B cells. Vaccinees showed SARS-CoV-2-specific T cell responses, which were further improved and specified after Omicron breakthrough infections in parallel to the appearance of new variant-specific antibodies.DiscussionIn conclusion, the third vaccination was essential to increase IgG levels, mandatory to boost AIC against immune-escape variants, and induced SARS-CoV-2-specific T cells. Breakthrough infection with Omicron generates additional spike specificities covering all known variants.
Project description:To determine viral dynamics in Omicron breakthrough infections, we measured severe acute respiratory syndrome coronavirus 2 RNA in 206 double-vaccinated or boostered individuals. During the first 3 days following the onset of symptoms, viral loads were significantly higher (cycle threshold [Ct], 21.76) in vaccinated compared to boostered (Ct, 23.14) individuals (P = .029). However, by performing a longitudinal analysis on 32 individuals over 14 days, no difference in the viral load trajectory was observed between double-vaccinated and boostered patients. Our results indicate that booster immunization results in a reduction in detectable viral loads without significantly changing viral load dynamics over time.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant has been hypothesized to decrease the efficacy of COVID-19 vaccines. Factors associated with infections with SARS-CoV-2 after vaccination are unknown. In this observational cohort study, we examined two groups in Harris County, Texas: (1) individuals with positive Nucleic Acid Amplification test between 12/14/2020 and 9/30/2021 and (2) the subset of individuals fully vaccinated in the same time period. Infected individuals were classified as a breakthrough if their infection occurred 14 days after their vaccination had been completed. Among fully vaccinated individuals, demographic and vaccine factors associated with breakthrough infections were assessed. Of 146,731 positive SARS-CoV-2 tests, 7.5% were breakthrough infections. Correlates of breakthrough infection included young adult age, female, White race, and receiving the Janssen vaccine, after adjustments including the amount of community spread at the time of infection. Vaccines remained effective in decreasing the probability of testing positive for SARS-CoV-2. The data indicate that increased vaccine booster uptake would help decrease new infections.
Project description:Vaccination has proven effective against infection with SARS-CoV-2, as well as death and hospitalisation following COVID-19 illness. However, little is known about the effect of vaccination on other acute and post-acute outcomes of COVID-19. Data were obtained from the TriNetX electronic health records network (over 81 million patients mostly in the USA). Using a retrospective cohort study and time-to-event analysis, we compared the incidences of COVID-19 outcomes between individuals who received a COVID-19 vaccine (approved for use in the USA) at least 2 weeks before SARS-CoV-2 infection and propensity score-matched individuals unvaccinated for COVID-19 but who had received an influenza vaccine. Outcomes were ICD-10 codes representing documented COVID-19 sequelae in the 6 months after a confirmed SARS-CoV-2 infection (recorded between January 1 and August 31, 2021, i.e. before the emergence of the Omicron variant). Associations with the number of vaccine doses (1 vs. 2) and age (<60 vs. ≥ 60 years-old) were assessed. Among 10,024 vaccinated individuals with SARS-CoV-2 infection, 9479 were matched to unvaccinated controls. Receiving at least one COVID-19 vaccine dose was associated with a significantly lower risk of respiratory failure, ICU admission, intubation/ventilation, hypoxaemia, oxygen requirement, hypercoagulopathy/venous thromboembolism, seizures, psychotic disorder, and hair loss (each as composite endpoints with death to account for competing risks; HR 0.70-0.83, Bonferroni-corrected p < 0.05), but not other outcomes, including long-COVID features, renal disease, mood, anxiety, and sleep disorders. Receiving 2 vaccine doses was associated with lower risks for most outcomes. Associations between prior vaccination and outcomes of SARS-CoV-2 infection were marked in those <60 years-old, whereas no robust associations were observed in those ≥60 years-old. In summary, COVID-19 vaccination is associated with lower risk of several, but not all, COVID-19 sequelae in those with breakthrough SARS-CoV-2 infection. The findings may inform service planning, contribute to forecasting public health impacts of vaccination programmes, and highlight the need to identify additional interventions for COVID-19 sequelae.
Project description:SARS-CoV-2 breakthrough infections in vaccinated individuals and in those who had a prior infection have been observed globally, but the transmission potential of these infections is unknown. The RT-qPCR cycle threshold (Ct) value is inversely correlated with viral load and culturable virus. Here, we investigate differences in RT-qPCR Ct values across Qatar's national cohorts of primary infections, reinfections, BNT162b2 (Pfizer-BioNTech) breakthrough infections, and mRNA-1273 (Moderna) breakthrough infections. Our matched-cohort analyses of the randomly diagnosed infections show higher mean Ct value in all cohorts of breakthrough infections compared to the cohort of primary infections in unvaccinated individuals. The Ct value is 1.3 (95% CI: 0.9-1.8) cycles higher for BNT162b2 breakthrough infections, 3.2 (95% CI: 1.9-4.5) cycles higher for mRNA-1273 breakthrough infections, and 4.0 (95% CI: 3.5-4.5) cycles higher for reinfections in unvaccinated individuals. Since Ct value correlates inversely with SARS-CoV-2 infectiousness, these differences imply that vaccine breakthrough infections and reinfections are less infectious than primary infections in unvaccinated individuals. Public health benefits of vaccination may have been underestimated, as COVID-19 vaccines not only protect against acquisition of infection, but also appear to protect against transmission of infection.