Project description:We evaluated saliva (SAL) specimens for SARS-CoV-2 RT-PCR testing by comparison of 459 prospectively paired nasopharyngeal (NP) or mid-turbinate (MT) swabs from 449 individuals with the aim of using saliva for asymptomatic screening. Samples were collected in a drive-through car line for symptomatic individuals (N=380) and in the emergency department (ED) (N=69). The percent positive and negative agreement of saliva compared to nasopharyngeal swab were 81.1% (95% CI: 65.8% - 90.5%) and 99.8% (95% CI: 98.7% - 100%), respectively. The sensitivity increased to 90.0% (95% CI: 74.4% - 96.5%) when considering only samples with moderate to high viral load (Cycle threshold (Ct) for the NP <=34). Pools of five saliva specimens were also evaluated on three platforms: bioMérieux NucliSENS easyMAG with ABI 7500Fast (CDC assay), Hologic Panther Fusion, and Roche COBAS 6800. The median loss of signal upon pooling was 2-4 Ct values across the platforms. The sensitivity of detecting a positive specimen in a pool compared with testing individually was 100%, 93%, and 95% for CDC 2019-nCoV Real-Time RT-PCR, Panther Fusion® SARS-CoV-2 assay, and cobas® SARS-CoV-2 test respectively, with decreased sample detection trending with lower viral load. We conclude that although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport media for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Project description:We evaluated saliva (SAL) specimens for SARS-CoV-2 reverse transcriptase PCR (RT-PCR) testing by comparison of 459 prospectively paired nasopharyngeal (NP) or midturbinate (MT) swabs from 449 individuals with the aim of using saliva for asymptomatic screening. Samples were collected in a drive-through car line for symptomatic individuals (n = 380) and in the emergency department (ED) (n = 69). The percentages of positive and negative agreement of saliva compared to nasopharyngeal swab were 81.1% (95% confidence interval [CI], 65.8% to 90.5%) and 99.8% (95% CI, 98.7% to 100%), respectively. The percent positive agreement increased to 90.0% (95% CI, 74.4% to 96.5%) when considering only samples with moderate to high viral load (cycle threshold [CT ] for the NP, ≤34). Pools of five saliva specimens were also evaluated on three platforms, bioMérieux NucliSENS easyMAG with ABI 7500Fast (CDC assay), Hologic Panther Fusion, and Roche Cobas 6800. The average loss of signal upon pooling was 2 to 3 CT values across the platforms. The sensitivities of detecting a positive specimen in a pool compared with testing individually were 94%, 90%, and 94% for the CDC 2019-nCoV real-time RT-PCR, Panther Fusion SARS-CoV-2 assay, and Cobas SARS-CoV-2 test, respectively, with decreased sample detection trending with lower viral load. We conclude that although pooled saliva testing, as collected in this study, is not quite as sensitive as NP/MT testing, saliva testing is adequate to detect individuals with higher viral loads in an asymptomatic screening program, does not require swabs or viral transport medium for collection, and may help to improve voluntary screening compliance for those individuals averse to various forms of nasal collections.
Project description:We analyzed feasibility of pooling saliva samples for severe acute respiratory syndrome coronavirus 2 testing and found that sensitivity decreased according to pool size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 11.1%; and 20 samples/pool, 14.8%. When virus prevalence is >2.6%, pools of 5 require fewer tests; when <0.6%, pools of 20 support screening strategies.
Project description:Throughout the coronavirus disease 2019 (COVID-19) pandemic, government policy and healthcare implementation responses have been guided by reported positivity rates and counts of positive cases in the community. The selection bias of these data calls into question their validity as measures of the actual viral incidence in the community and as predictors of clinical burden. In the absence of any successful public or academic campaign for comprehensive or random testing, we have developed a proxy method for synthetic random sampling, based on viral RNA testing of patients who present for elective procedures within a hospital system. We present here an approach under multilevel regression and poststratification to collecting and analyzing data on viral exposure among patients in a hospital system and performing statistical adjustment that has been made publicly available to estimate true viral incidence and trends in the community. We apply our approach to tracking viral behavior in a mixed urban-suburban-rural setting in Indiana. This method can be easily implemented in a wide variety of hospital settings. Finally, we provide evidence that this model predicts the clinical burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) earlier and more accurately than currently accepted metrics. See video abstract at, http://links.lww.com/EDE/B859.
Project description:SARS-CoV-2 has surged across the globe causing the ongoing COVID-19 pandemic. Systematic testing to facilitate index case isolation and contact tracing is needed for efficient containment of viral spread. The major bottleneck in leveraging testing capacity has been the lack of diagnostic resources. Pooled testing is a potential approach that could reduce cost and usage of test kits. This method involves pooling individual samples and testing them 'en bloc'. Only if the pool tests positive, retesting of individual samples is performed. Upon reviewing recent articles on this strategy employed in various SARS-CoV-2 testing scenarios, we found substantial diversity emphasizing the requirement of a common protocol. In this article, we review various theoretically simulated and clinically validated pooled testing models and propose practical guidelines on applying this strategy for large scale screening. If implemented properly, the proposed approach could contribute to proper utilization of testing resources and flattening of infection curve.
Project description:BackgroundActive detection of SARS-CoV-2 infection through testing is elementary for the control of COVID-19 pandemic. The implementation of large-scale RT-PCR testing has led to a rise in the demand for testing kits whose availability is always a concern.ObjectiveTo find out the feasibility of pooled testing in a high-throughput platform.MethodologyPooled testing was conducted in Roche cobas 6800 in 2 methods. Firstly, the simple two-stage testing algorithm was conducted for 1410 samples individually and then as pooled samples. Secondly, we evaluated the sensitivity of cobas 6800 for the detection of a single positive sample within a pool of negative samples.ResultsImplementing the five-sample Dorfman pooling to test 1410 samples, we identified 42 (2.9%) individual SARS-CoV-2-positive samples and 27 (9.5%) positive pool samples. The pooling strategy precisely identified all the positive samples. All individually negative samples were also accurately determined by pooling. There was 100% sensitivity of detecting positive samples in a pool of negative samples even up to 1:64 dilution. There was a threefold increase in total throughput in one-third of the cost per day.ConclusionA high-throughput platform such as Cobas 6800 can effectively increase the testing capacity by twofold to threefold by adopting the pooled testing strategy for successful management of SARS-CoV-2 and helping in the containment of community transmission.
Project description:IntroductionTesting for active SARS-CoV-2 infection is a fundamental tool in the public health measures taken to control the COVID-19 pandemic. Because of the overwhelming use of SARS-CoV-2 reverse transcription (RT)-PCR tests worldwide, the availability of test kits has become a major bottleneck and the need to increase testing throughput is rising. We aim to overcome these challenges by pooling samples together, and performing RNA extraction and RT-PCR in pools.MethodsWe tested the efficiency and sensitivity of pooling strategies for RNA extraction and RT-PCR detection of SARS-CoV-2. We tested 184 samples both individually and in pools to estimate the effects of pooling. We further implemented Dorfman pooling with a pool size of eight samples in large-scale clinical tests.ResultsWe demonstrated pooling strategies that increase testing throughput while maintaining high sensitivity. A comparison of 184 samples tested individually and in pools of eight samples showed that test results were not significantly affected. Implementing the eight-sample Dorfman pooling to test 26 576 samples from asymptomatic individuals, we identified 31 (0.12%) SARS-CoV-2 positive samples, achieving a 7.3-fold increase in throughput.DiscussionPooling approaches for SARS-CoV-2 testing allow a drastic increase in throughput while maintaining clinical sensitivity. We report the successful large-scale pooled screening of asymptomatic populations.
Project description:ObjectiveTo evaluate the effectiveness of SARS-CoV-2 testing on shortening the duration of quarantines for COVID-19 and to identify the most effective choices of testing schedules.DesignWe performed extensive simulations to evaluate the performance of quarantine strategies when one or more SARS-CoV-2 tests were administered during the quarantine. Simulations were based on statistical models for the transmissibility and viral loads of SARS-CoV-2 infections and the sensitivities of available testing methods. Sensitivity analyses were performed to evaluate the impact of perturbations in model assumptions on the outcomes of optimal strategies.ResultsWe found that SARS-CoV-2 testing can effectively reduce the length of a quarantine without compromising safety. A single reverse transcription-PCR (RT-PCR) test performed before the end of quarantine can reduce quarantine duration to 10 days. Two tests can reduce the duration to 8 days, and three highly sensitive RT-PCR tests can justify a 6-day quarantine. More strategic testing schedules and longer quarantines are needed if tests are administered with less-sensitive RT-PCR tests or antigen tests. Shorter quarantines can be used for applications that tolerate a residual postquarantine transmission risk comparable to a 10-day quarantine.ConclusionsTesting could substantially reduce the length of isolation, reducing the physical and mental stress caused by lengthy quarantines. With increasing capacity and lowered costs of SARS-CoV-2 tests, test-assisted quarantines could be safer and more cost-effective than 14-day quarantines and warrant more widespread use.
Project description:Nucleic acid testing is the most widely used detection method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Currently, a number of COVID-19 real-time quantitative reverse transcription PCR (qPCR) kits with high sensitivity and specificity are available for SARS-CoV-2 testing. However, these qPCR assays are not always reliable in detecting low viral load samples (Ct-value ≥ 35), resulting in inconclusive or false-negative results. Here, we used a Poisson distribution to illustrate the inconsistent performance of qPCR tests in detecting low viral load samples. From this, we concluded that the false-negative outcomes resulted from the random occurrences of sampling zero target molecules in a single test, and the probability to sample zero target molecules in one test decreased significantly with increasing purified RNA or initial sample input volume. At a given RNA concentration of 0.5 copy/μL, the probability of sampling zero RNA molecules decreased from 36.79% to close to 0.67% after increasing the RNA input volume from 2 to 10 μL. A SARS-CoV-2 qPCR assay with an LOD of 300 copies/mL was used to validate the improved consistency of the qPCR tests. We found that the false-negative qPCR results of clinical COVID-19 samples with a Ct ≥ 35 decreased by 50% after increasing the input of purified RNA from 2 to 10 μL. The consistency, accuracy, and robustness of nucleic acid testing for SARS-CoV-2 samples with low viral loads can be improved by increasing the sample input volume.
Project description:PurposeTo evaluate the diagnostic reliability and practicability of self-collected oropharyngeal swab samples for the detection of SARS-CoV-2 infection as self-sampling could enable broader testing availability and reduce both personal protective equipment and potential exposure.MethodsHospitalized SARS-CoV-2-infected patients were asked to collect two oropharyngeal swabs (SC-OPS1/2), and an additional oropharyngeal swab was collected by a health care professional (HCP-OPS). SARS-CoV-2 PCR testing for samples from 58 participants was performed, with a 48-h delay in half of the self-collected samples (SC-OPS2). The sensitivity, probability of concordance, and interrater reliability were calculated. Univariate and multivariate analyses were performed to assess predictive factors. Practicability was evaluated through a questionnaire.ResultsThe test sensitivity for HCP-OPS, SC-OPS1, and SC-OPS2 was 88%, 78%, and 77%, respectively. Combining both SC-OPS results increased the estimated sensitivity to 88%. The concordance probability between HCP-OPS and SC-OPS1 was 77.6% and 82.5% between SC-OPS1 and SC-OPS2, respectively. Of the participants, 69% affirmed performing future self-sampling at home, and 34% preferred self-sampling over HCP-guided testing. Participants with both positive HCP-OPS1 and SC-OPS1 indicating no challenges during self-sampling had more differences in viral load levels between HCP-OPS1 and SC-OPS1 than those who indicated challenges. Increasing disease duration and the presence of anti-SARS-CoV-2-IgG correlated with negative test results in self-collected samples of previously confirmed SARS-CoV-2 positive individuals.ConclusionOropharyngeal self-sampling is an applicable testing approach for SARS-CoV-2 diagnostics. Self-sampling tends to be more effective in early versus late infection and symptom onset, and the collection of two distinct samples is recommended to maintain high test sensitivity.