Project description:Tauopathies are a class of neurodegenerative diseases, including Alzheimer’s disease, and are characterized by intraneuronal tau inclusion in the brain and the patient’s cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer’s patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Project description:Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by the deficiency of lysosomal enzymes needed to catabolize glycosaminoglycans (GAGs). Four therapeutic options are currently considered: enzyme replacement therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell transplantation. However, while some of them exhibit limited clinical efficacy and require high costs, others are still in development. Therefore, alternative treatments for MPSs need to be explored. Here we describe an innovative therapeutic approach based on the use of a recombinant protein that is able to bind the excess of extracellular accumulated heparan sulfate (HS). We demonstrate that this protein is able to reduce lysosomal defects in primary fibroblasts from MPS I and MPS IIIB patients. We also show that, by masking the excess of extracellular accumulated HS in MPS fibroblasts, fibroblast growth factor (FGF) signal transduction can be positively modulated. We, therefore, suggest the use of a competitive binding molecule for HS in MPSs as an alternative strategy to prevent the detrimental extracellular substrate storage.
Project description:The surface proteoglycan/glycoprotein layer (glycocalyx) on tumor cells has been associated with cellular functions that can potentially enable invasion and metastasis. In addition, aggressive tumor cells with high metastatic potential have enhanced invasion rates in response to interstitial flow stimuli in vitro. Our previous studies suggest that heparan sulfate (HS) in the glycocalyx plays an important role in this flow mediated mechanostransduction and upregulation of invasive and metastatic potential. In this study, highly metastatic renal cell carcinoma cells were genetically modified to suppress HS production by knocking down its synthetic enzyme NDST1. Using modified Boyden chamber and microfluidic assays, we show that flow-enhanced invasion is suppressed in HS deficient cells. To assess the ability of these cells to metastasize in vivo, parental or knockdown cells expressing fluorescence reporters were injected into kidney capsules in SCID mice. Histological analysis confirmed that there was a large reduction (95%) in metastasis to distant organs by tumors formed from the NDST1 knockdown cells compared to control cells with intact HS. The ability of these cells to invade surrounding tissue was also impaired. The substantial inhibition of metastasis and invasion upon reduction of HS suggests an active role for the tumor cell glycocalyx in tumor progression.
Project description:Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.
Project description:Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9:LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.PCSK9 interacts with LDL receptor, causing its degradation, and consequently reduces the clearance of LDL. Here, Gustafsen et al. show that PCSK9 interacts with heparan sulfate proteoglycans and this binding favors LDLR degradation. Pharmacological inhibition of this binding can be exploited as therapeutic intervention to lower LDL levels.
Project description:Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1-4) and glypicans (GPC1-6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.
Project description:Bone morphogenetic protein (BMP) signalling is key to many developmental processes, including early regionalisation of the ectoderm. The neural crest is induced here by a combination of BMP and Wnt signals from nearby tissues with many secreted factors contributing to its initial specification at the neural plate border. Gremlin 1 (Grem1) is a secreted BMP antagonist expressed in the neural crest in Xenopus laevis but its function here is unknown. As well as binding BMPs, Grem1 has been shown to interact with heparan sulfate proteoglycans (HSPGs), a family of cell surface macromolecules that regulate a diverse array of signalling molecules by affecting their availability and mode of action. This study describes the impact of HSPGs on the function of Grem1 in neural crest induction. It shows for the first time that Grem1 is required for neural crest development in a two-step process comprising an early HSPG-independent, followed by a late HSPG-dependent phase.
Project description:Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K D = 55 nM) compared to the RBD (K D = 1 μM) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development.
Project description:UnlabelledHepatitis C virus (HCV) entry involves binding to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step. Deletion of hypervariable region 1, a region previously proposed to be involved in HS binding, did not alter HCV virion binding to HS, indicating that this region is not involved in this interaction in the context of a viral infection. Patient sera and monoclonal antibodies recognizing different regions of HCV envelope glycoproteins were also used in a pulldown assay with beads coated with heparin, a close HS structural homologue. Although isolated HCV envelope glycoproteins could interact with heparin, none of these antibodies was able to interfere with the virion-heparin interaction, strongly suggesting that at the virion surface, HCV envelope glycoproteins are not accessible for HS binding. In contrast, results from kinetic studies, heparin pulldown experiments, and inhibition experiments with anti-apolipoprotein E antibodies indicated that this apolipoprotein plays a major role in HCV-HS interaction. Finally, characterization of the HS structural determinants required for HCV infection by silencing of the enzymes involved in the HS biosynthesis pathway and by competition with modified heparin indicated that N- and 6-O-sulfation but not 2-O-sulfation is required for HCV infection and that the minimum HS oligosaccharide length required for HCV infection is a decasaccharide. Together, these data indicate that HCV hijacks apolipoprotein E to initiate its interaction with specific HS structures.ImportanceHepatitis C is a global health problem. Hepatitis C virus (HCV) infects approximately 130 million individuals worldwide, with the majority of cases remaining undiagnosed and untreated. In most infected individuals, the virus evades the immune system and establishes a chronic infection. As a consequence, hepatitis C is the leading cause of cirrhosis, end-stage liver disease, hepatocellular carcinoma, and liver transplantation. Virus infection is initiated by entry of the virus into the host cell. In this study, we provide new insights into the viral and cellular determinants involved in the first step of HCV entry, the binding of the virus to host cells. We show that apolipoprotein E is likely responsible for virus binding to heparan sulfate and that N- and 6-O-sulfation of the heparan sulfate proteoglycans is required for HCV infection. In addition, the minimal HS length unit required for HCV infection is a decasaccharide.
Project description:R-spondins (RSPOs) amplify WNT signaling during development and regenerative responses. We previously demonstrated that RSPOs 2 and 3 potentiate WNT/β-catenin signaling in cells lacking leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4, 5 and 6 (Lebensohn and Rohatgi, 2018). We now show that heparan sulfate proteoglycans (HSPGs) act as alternative co-receptors for RSPO3 using a combination of ligand mutagenesis and ligand engineering. Mutations in RSPO3 residues predicted to contact HSPGs impair its signaling capacity. Conversely, the HSPG-binding domains of RSPO3 can be entirely replaced with an antibody that recognizes heparan sulfate (HS) chains attached to multiple HSPGs without diminishing WNT-potentiating activity in cultured cells and intestinal organoids. A genome-wide screen for mediators of RSPO3 signaling in cells lacking LGRs 4, 5 and 6 failed to reveal other receptors. We conclude that HSPGs are RSPO co-receptors that potentiate WNT signaling in the presence and absence of LGRs.