Project description:BackgroundThe ventral intermediate nucleus (VIM) is the target of choice for Essential Tremor (ET) deep brain stimulation (DBS). Renewed interest in caudal zona incerta (cZI) stimulation for tremor control has recently emerged and some groups believe this approach may address long-term reduction of benefit seen with VIM-DBS.ObjectivesTo compare clinical outcomes and DBS programming in the long-term between VIM and cZI neurostimulation in ET-DBS patients.Materials and methodsA retrospective review of 53 DBS leads from 47 patients was performed. Patients were classified into VIM or cZI groups according to the location of the activated DBS contact. Demographics, DBS settings, and Tremor Rating Scale scores were compared between groups at baseline and yearly follow-up to 4 years after DBS. Student t-tests and analysis of variance (ANOVA) were used to compare variables between groups.ResultsRelative to baseline, an improvement in ON-DBS tremor scores was observed in both groups from 6 months to 4 years post-DBS (p < 0.05). Although improvement was still significant at 4 years, scores from month 6 to 2 years were comparable between groups but at 3 and 4 years post-DBS the outcome was better in the VIM group (p < 0.01). Stimulation settings were similar across groups, although we found a lower voltage in the VIM group at 3 years post-DBS.ConclusionsMore ventral DBS contacts in the cZI region do improve tremor, however, VIM-DBS provided better long-term outcomes. Randomized controlled trials comparing cZI vs VIM targets should confirm these results.
Project description:Mutations in the aristaless-related homeobox (ARX) gene result in a spectrum of structural and functional nervous system disorders including lissencephaly, movement disorders, intellectual disabilities, and epilepsy. Some patients also have symptoms indicating hypothalamic dysfunction, but little is known about the role of ARX in diencephalic development. To begin evaluating diencephalic defects, we examined the expression of a panel of known genes and gene products that label specific diencephalic nuclei in 2 different Arx mutant mouse lines at E18.5. Male mice engineered to have a polyalanine expansion mutation (Arx) revealed no expression differences in any diencephalic nucleus when compared with wild-type littermates. In contrast, mice null for Arx (Arx) lost expression of specific markers of the thalamic reticular nucleus and zona incerta (ZI) while retaining expression in other thalamic nuclei and in the hypothalamus. Tyrosine hydroxylase, a marker of the dopaminergic A13 subnucleus of ZI, was among those lost, suggesting a requirement for Arx in normal thalamic reticular nucleus and ZI development and, specifically, for A13 dopaminergic fate. Because the ZI and A13 regions make connections to several hypothalamic nuclei, such misspecification may contribute to the "hypothalamic dysfunction" observed in some patients.
Project description:Both subthalamic nucleus (STN) and caudal zona incerta (cZI) have been implicated as the optimal locus for deep brain stimulation (DBS) in Parkinson's disease (PD). We present a retrospective clinico-anatomical analysis of outcomes from DBS targeting both STN and cZI. Forty patients underwent bilateral DBS using an image-verified implantable guide tube/stylette technique. Contacts on the same quadripolar lead were placed in both STN and cZI. After pulse generator programming, contacts yielding the best clinical effect were selected for chronic stimulation. OFF-medication unified PD rating scale (UPDRS) part III scores pre-operatively and ON-stimulation at 1-2 year follow up were compared. Active contacts at follow-up were anatomically localised from peri-operative imaging. Overall, mean UPDRS part III score improvement was 55?±?9% (95% confidence interval), with improvement in subscores for rigidity (59?±?13%), bradykinesia (58?±?13%), tremor (71?±?24%) and axial features (36?±?19%). Active contacts were distributed in the following locations: (1) within posterior/dorsal STN (50%); (2) dorsal to STN (24%); (3) in cZI (21%); and (4) lateral to STN (5%). When contacts were grouped by location, no significant differences between groups were seen in baseline or post-operative improvement in contralateral UPDRS part III subscores. We conclude that when both STN and cZI are targeted, active contacts are distributed most commonly within and immediately dorsal to STN. In a subgroup of cases, cZI contacts were selected for chronic stimulation in preference. Dual targeting of STN and cZI is feasible and may provide extra benefit compared with conventional STN DBS is some patients.
Project description:The anterior pretectal nucleus (APT) and the zona incerta (ZI) are diencephalic nuclei that exert a strong inhibitory influence selectively in higher order thalamic relays. The APT is also known to project to the ZI as well as the thalamus, but anatomical details of the APT-ZI projection have not been described. In the present study, the efferent pathways of the APT were examined in the APT-ZI-thalamus network by using anterograde and retrograde tracing in combination with pre- and postembedding immunocytochemical stainings and in situ hybridization. The vast majority of APT fibers selectively innervated the parvalbumin-positive, ventral part of the ZI, which contains ZI neurons with axons projecting to higher order thalamic nuclei. The APT-ZI pathway consisted of both gamma-aminobutyric acid (GABA)-negative and GABA-positive components; 38.2% of the terminals in the ZI contained GABA, and 8.6% of the projecting somata in the APT were glutamic acid decarboxylase 67 (GAD67) mRNA positive. The combination of parvalbumin immunostaining with retrograde tracing showed that strongly and weakly parvalbumin-positive as well as parvalbumin-negative neurons were all among the population of APT cells projecting to the ZI. Similar heterogeneity was found among the APT cells projecting to the thalamus. Double retrograde tracing from higher order thalamic nuclei and their topographically matched ZI regions revealed hardly any APT neuron with dual projections. Our data suggest that both ZI and the higher order thalamic relays are innervated by distinct, physiologically heterogeneous APT neurons. These various efferent pathways probably interact via the rich recurrent collaterals of the projecting APT cells. Therefore, the powerful, GABAergic APT and ZI outputs to the thalamus are apparently co-modulated in a synergistic manner via dual excitatory and inhibitory APT-ZI connections.
Project description:Nociception is important perception that has harmful influence on daily life of humans. As to main pain management system, some descending pathways are called descending antinociceptive systems (DAS). As main pathways of DAS, it is well known that dorsal raphe (B6/B7) - rostral ventromedial medulla (B3) - spinal dorsal horn includes serotonergic system. However, possible role of supralemniscal (B9) serotonin (5-HT) cell group in pain management is still open question. In this study, we measured activities of B9 5-HT neuronal cell bodies and B9 5-HT neuron-derived axons located in the locus coeruleus (LC) and ventral tegmental area (VTA), which are also main players of pain management, using fiber photometry system. We introduced the G-CaMP6 in B9 5-HT neurons using transgenic mice carrying a tetracycline-controlled transactivator transgene (tTA) under the control of a tryptophan hydroxylase-2 (TPH2) promoter and site-specific injection of adeno associated virus (AAV-TetO(3G)-G-CaMP6). After confirmation of specific expression of G-CaMP6 in the target population, G-CaMP6 fluorescence intensity in B9 group and LC/VTA groups was measured in awake mice exposed to acute tail pinch and heat stimuli. G-CaMP6 fluorescence intensity rapidly increased by both stimuli in all groups, but not significantly reacted by nonnociceptive control stimuli. The present results clearly indicate that acute nociceptive stimuli cause a rapid increase in the activities of B9-LC/B9-VTA 5-HTergic pathways, suggesting that B9 5-HT neurons play important roles in nociceptive processing.
Project description:Fear expressed toward threat-associated stimuli is an adaptive behavioral response. In contrast, the generalization of fear responses toward nonthreatening cues is a maladaptive and debilitating dimension of trauma- and anxiety-related disorders. Expressing fear to appropriate stimuli and suppressing fear generalization require integration of relevant sensory information and motor output. While thalamic and subthalamic brain regions play important roles in sensorimotor integration, very little is known about the contribution of these regions to the phenomenon of fear generalization. In this study, we sought to determine whether fear generalization could be modulated by the zona incerta (ZI), a subthalamic brain region that influences sensory discrimination, defensive responses, and retrieval of fear memories. To do so, we combined differential intensity-based auditory fear conditioning protocols in mice with C-FOS immunohistochemistry and designer receptors exclusively activated by designer drugs (DREADDs)-based manipulation of neuronal activity in the ZI. C-FOS immunohistochemistry revealed an inverse relationship between ZI activation and fear generalization: The ZI was less active in animals that generalized fear. In agreement with this relationship, chemogenetic inhibition of the ZI resulted in fear generalization, while chemogenetic activation of the ZI suppressed fear generalization. Furthermore, targeted stimulation of GABAergic cells in the ZI reduced fear generalization. To conclude, our data suggest that stimulation of the ZI could be used to treat fear generalization in the context of trauma- and anxiety-related disorders.
Project description:Stimulation of zona incerta in rodent models has been shown to modulate behavioral reactions to noxious stimuli. Sensory changes observed in Parkinsonian patients with subthalamic deep brain stimulation suggest that this effect is translatable to humans. Here, we utilized the serendipitous placement of subthalamic deep brain stimulation leads in 6 + 5 Parkinsonian patients to directly investigate the effects of zona incerta stimulation on human pain perception. We found that stimulation at 20 Hz, the physiological firing frequency of zona incerta, reduces experimental heat pain by a modest but significant amount, achieving a 30% reduction in one fifth of implants. Stimulation at higher frequencies did not modulate heat pain. Modulation was selective for heat pain and was not observed for warmth perception or pressure pain. These findings provide a mechanistic explanation of sensory changes seen in subthalamic deep brain stimulation patients and identify zona incerta as a potential target for neuromodulation of pain.
Project description:Pain and itch are intricately entangled at both circuitry and behavioral levels. Emerging evidence indicates that parvalbumin (PV)-expressing neurons in zona incerta (ZI) are critical for promoting nocifensive behaviors. However, the role of these neurons in itch modulation remains elusive. Herein, by combining FOS immunostaining, fiber photometry, and chemogenetic manipulation, we reveal that ZI PV neurons act as an endogenous negative diencephalic modulator for itch processing. Morphological data showed that both histamine and chloroquine stimuli induced FOS expression in ZI PV neurons. The activation of these neurons was further supported by the increased calcium signal upon scratching behavior evoked by acute itch. Behavioral data further indicated that chemogenetic activation of these neurons reduced scratching behaviors related to histaminergic and non-histaminergic acute itch. Similar neural activity and modulatory role of ZI PV neurons were seen in mice with chronic itch induced by atopic dermatitis. Together, our study provides direct evidence for the role of ZI PV neurons in regulating itch, and identifies a potential target for the remedy of chronic itch.