Unknown

Dataset Information

0

5-Fluorouracil blocks quorum-sensing of biofilm-embedded methicillin-resistant Staphylococcus aureus in mice.


ABSTRACT: Antibiotic-resistant pathogens often escape antimicrobial treatment by forming protective biofilms in response to quorum-sensing communication via diffusible autoinducers. Biofilm formation by the nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA) is triggered by the quorum-sensor autoinducer-2 (AI-2), whose biosynthesis is mediated by methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) and S-ribosylhomocysteine lyase (LuxS). Here, we present a high-throughput screening platform for small-molecular inhibitors of either enzyme. This platform employs a cell-based assay to report non-toxic, bioavailable and cell-penetrating inhibitors of AI-2 production, utilizing engineered human cells programmed to constitutively secrete AI-2 by tapping into the endogenous methylation cycle via ectopic expression of codon-optimized MTAN and LuxS. Screening of a library of over 5000 commercial compounds yielded 66 hits, including the FDA-licensed cytostatic anti-cancer drug 5-fluorouracil (5-FU). Secondary screening and validation studies showed that 5-FU is a potent quorum-quencher, inhibiting AI-2 production and release by MRSA, Staphylococcus epidermidis, Escherichia coli and Vibrio harveyi. 5-FU efficiently reduced adherence and blocked biofilm formation of MRSA in vitro at an order-of-magnitude-lower concentration than that clinically relevant for anti-cancer therapy. Furthermore, 5-FU reestablished antibiotic susceptibility and enabled daptomycin-mediated prevention and clearance of MRSA infection in a mouse model of human implant-associated infection.

SUBMITTER: Sedlmayer F 

PROVIDER: S-EPMC8287944 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7269516 | biostudies-literature
| S-EPMC5773577 | biostudies-literature
| S-EPMC10020441 | biostudies-literature
| S-EPMC9684512 | biostudies-literature
| S-EPMC5526357 | biostudies-literature
| S-EPMC6479040 | biostudies-literature
| S-EPMC3214024 | biostudies-literature
| S-EPMC7858585 | biostudies-literature
| S-EPMC10660471 | biostudies-literature
| S-EPMC11223284 | biostudies-literature