Project description:The expression of granulocyte colony-stimulating factor (G-CSF), the major regulator of neutrophil maturation, by human fibroblast-like synoviocytes (FLS) can be stimulated by the inflammatory cytokine interleukin-1β (IL-1β). G-CSF is known to contribute to the pathologic processes of destructive arthritis, but the induction mechanism remains unknown. The aims of this study were to identify the signaling pathways involved in IL-1β-stimulated G-CSF production and to determine whether this process was inhibited by aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), the major bioactive component of Chrysopogon aciculatus. IL-1β-induced cytokine expression was evaluated by measuring mRNA and protein levels by RT-PCR, ELISA, and Milliplex® assay. Whether aciculatin inhibited IL-1β-stimulated G-CSF expression, and if so, how, were evaluated using western blot assay, an electrophoretic mobility shift assay, and a reporter gene assay. Neutrophil differentiation was determined by Wright-Giemsa staining and flow cytometry. Aciculatin markedly inhibited G-CSF expression induced by IL-1β (10 ng/mL) in a concentration-dependent manner (1-10 µM). In clarifying the mechanisms involved, aciculatin was found to inhibit the IL-1β-induced activation of the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways by suppressing the DNA binding activity of the transcription factors NF-κB and activator protein (AP)-1. Furthermore, aciculatin significantly inhibited the G-CSF-mediated phosphorylation of Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Akt and neutrophil differentiation from precursor cells. Our results show that aciculatin inhibits IL-1β-stimulated G-CSF expression and the subsequent neutrophil differentiation, suggesting that it might have therapeutic potential for inflammatory arthritis.
Project description:COPD exacerbations are heterogeneous and can be triggered by bacterial, viral, or noninfectious insults. Exacerbations are also heterogeneous in neutrophilic or eosinophilic inflammatory responses. A noninvasive peripheral biomarker of COPD exacerbations characterised by bacterial/neutrophilic inflammation is lacking. Granulocyte-colony stimulating factor (G-CSF) is a key cytokine elevated during bacterial infection and mediates survival, proliferation, differentiation and function of neutrophils. We hypothesised that high peripheral G-CSF would be indicative of COPD exacerbations with a neutrophilic and bacterial phenotype associated with microbial dysbiosis. Serum G-CSF was measured during hospitalised exacerbation (day 0 or D0) and after 30 days of recovery (Day30 or D30) in 37 subjects. In a second cohort, serum and sputum cytokines were measured in 59 COPD patients during stable disease, at exacerbation, and at 2-weeks and 6-weeks following exacerbation. Serum G-CSF was increased during exacerbation in a subset of patients. These exacerbations were enriched for bacterial but not viral or type-2 biologies. The median serum G-CSF level was 1.6-fold higher in bacterial exacerbation compared to nonbacterial exacerbation (22 pg·mL-1versus 13 pg·mL-1, p=0.0007). Serum G-CSF classified bacterial exacerbations with an area under the curve (AUC) for the receiver operating characteristic (ROC) curve equal to 0.76. Exacerbations with a two-fold or greater increase in serum G-CSF were characterised by neutrophilic inflammation, with increased sputum and blood neutrophils, and high sputum interleukin (IL)-1β, IL-6 and serum amyloid A1 (SAA1) levels. These exacerbations were preceded by dysbiosis, with decreased microbiome diversity and enrichment of respiratory pathogens such as Haemophilus and Moraxella. Furthermore, serum G-CSF at exacerbation classified neutrophilic-dysbiotic exacerbations (AUC for the ROC curve equal to 0.75). High serum G-CSF enriches for COPD exacerbations characterised by neutrophilic inflammation with underlying bacterial dysbiosis.
Project description:Apolipoprotein A-I (apoA-I) is a key component of high-density lipoproteins that mediates reverse cholesterol transport from cells and reduces vascular inflammation. We investigated whether endogenous apoA-I modulates ovalbumin (OVA)-induced airway inflammation in mice. We found that apoA-I expression was significantly reduced in the lungs of OVA-challenged, compared with saline-challenged, wild-type (WT) mice. Next, to investigate the role of endogenous apoA-I in the pathogenesis of OVA-induced airway inflammation, WT and apoA-I(-/-) mice were sensitized by intraperitoneal injections of OVA and aluminum hydroxide, followed by multiple nasal OVA challenges for 4 weeks. OVA-challenged apoA-I(-/-) mice exhibited a phenotype of increased airway neutrophils compared with WT mice, which could be rescued by an administration of a 5A apoA-I mimetic peptide. Multiple pathways promoted neutrophilic inflammation in OVA-challenged apoA-I(-/-) mice, including the up-regulated expression of (1) proinflammatory cytokines (IL-17A and TNF-α), (2) CXC chemokines (CXCL5), (3) vascular adhesion molecules (i.e., vascular cell adhesion molecule-1), and (4) granulocyte colony-stimulating factors (G-CSF). Because concentrations of G-CSF in bronchoalveolar lavage fluid (BALF) were markedly increased in OVA-challenged apoA-I(-/-) mice, we hypothesized that enhanced G-CSF expression may represent the predominant pathway mediating increased neutrophilic inflammation. This was confirmed by the intranasal administration of a neutralizing anti-G-CSF antibody, which significantly reduced BALF neutrophilia by 72% in OVA-challenged apoA-I(-/-) mice, compared with mice that received a control antibody. We conclude that endogenous apoA-I negatively regulates OVA-induced neutrophilic airway inflammation, primarily via a G-CSF-dependent mechanism. Furthermore, these findings suggest that apoA-I may play an important role in modulating the severity of neutrophilic airway inflammation in asthma.
Project description:The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target.
Project description:Neutrophils can strongly influence disease activity in cancer and in chronic inflammation. Here, we report for the first time the construction and characterization of antibody-fusion proteins featuring granulocyte-colony stimulating factor and interleukin-3 as payloads capable of enhancing neutrophil activity and a novel antibody-interleukin-4 fusion protein with neutrophil inhibitory potential. We used the F8 antibody specific to the alternatively-spliced extra domain A (EDA) of fibronectin as a targeting agent, since the cognate antigen is strongly upregulated in diseases characterized by angiogenesis. The fusion proteins GCSF-F8, F8-IL3 and F8-IL4-F8, were cloned, expressed, and their targeting ability assessed, exhibiting preferential tumor uptake with tumor:blood ratios at 24?h after injection of 3.3, 18.2 and 27.3, respectively. In F9 tumor bearing-mice GCSF-F8 and F8-IL3 did not provide a therapeutic benefit, while F8-IL4-F8 showed a potent tumor growth retardation. In the collagen-induced model of arthritis, GCSF-F8 and F8-IL3 induced a worsening of the disease, while F8-IL4-F8 slowed arthritis progression but, surprisingly, exhibited substantial toxicity when used in combination with dexamethasone. Collectively, the results indicate that the novel fusion proteins could be expressed and efficiently delivered to the site of disease. However, they were not superior to other antibody-cytokine fusions previously described by our laboratory.
Project description:BackgroundPneumonia is a common complication of influenza and closely related to mortality in influenza patients. The present study examines cytokines as predictors of the prognosis of influenza-associated pneumonia.MethodsThis study included 101 inpatients with influenza (64 pneumonia and 37 non-pneumonia patients). 48 cytokines were detected in the serum samples of the patients and the clinical characteristics were analyzed. The correlation between them was analyzed to identify predictive biomarkers for the prognosis of influenza-associated pneumonia.ResultsSeventeen patients had poor prognosis and developed pneumonia. Among patients with influenza-associated pneumonia, the levels of 8 cytokines were significantly higher in those who had a poor prognosis: interleukin-6 (IL-6), interferon-γ (IFN-γ), granulocyte colony-stimulating factor (G-CSF), monocyte colony-stimulating factor (M-CSF), monocyte chemoattractant protein-1 (MCP-1), monocyte chemoattractant protein-3, Interleukin-2 receptor subunit alpha and Hepatocyte growth factor. Correlation analysis showed that the IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had positive correlations with the severity of pneumonia. IL-6 and G-CSF showed a strong and positive correlation with poor prognosis in influenza-associated pneumonia patients. The combined effect of the two cytokines resulted in the largest area (0.926) under the receiver-operating characteristic curve.ConclusionThe results indicate that the probability of poor prognosis in influenza patients with pneumonia is significantly increased. IL-6, G-CSF, M-CSF, IFN-γ, and MCP-1 levels had a positive correlation with the severity of pneumonia. Importantly, IL-6 and G-CSF were identified as significant predictors of the severity of influenza-associated pneumonia.
Project description:RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1(+/-) hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expansion and mobilization of stem/progenitor cells and myeloid differentiation block. Upon G-CSF stimulation, Runx1(+/-) cells exhibited a more pronounced phosphorylation of STAT3 as compared with Runx1(+/+) cells, which may be due to reduced expression of Pias3, a key negative regulator of STAT3 signaling, and reduced physical sequestration of STAT3 by RUNX1. Most importantly, blood cells from a FPD patient with RUNX1 mutation exhibited similar G-CSF hypersensitivity. Taken together, Runx1 haploinsufficiency appears to predispose FPD patients to MM by expanding the pool of stem/progenitor cells and blocking myeloid differentiation in response to G-CSF.
Project description:Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.
Project description:Background Granulocyte colony-stimulating factor (G-CSF) is a member of the CSF family of glycoproteins that regulate the proliferation, differentiation, and mobilization of neutrophils. G-CSF-producing malignant cancers have been reported to occur in various organs and are mostly associated with poor clinical prognosis. Here, we analyzed the structure of the CSF3 gene encoding the G-CSF protein to delineate the mechanism of G-CSF production by the cancer cells. Methodology Two cases of G-CSF-producing urothelial cancers and three cases of G-CSF-nonproducing bladder cancers were enrolled for genetic analysis. Results In one case of G-CSF-producing bladder cancer, six somatic mutations were detected in the 5'- upstream region of the CSF3 gene. No somatic mutations in the CSF3 gene were detected in another case of G-CSF-producing renal pelvic cancer and G-CSF-nonproducing bladder cancers. Copy numbers of the CSF3 gene were not increased in G-CSF-producing urothelial cancers. Conclusions Somatic mutations in the 5'- upstream region of the CSF3 gene may cause G-CSF protein overproduction.