Project description:BackgroundBCR::ABL1-like or Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) was first reported in 2009. Ph-like ALL is characterized by gene signature similar to Philadelphia chromosome ALL, but without BCR::ABL1 fusions. Molecularly, Ph-like ALL is divided into seven categories, with CRLF2 and ABL-class rearrangements being the two most common subtypes, exhibiting alterations in distinct downstream signaling cascades.Case presentationWe report a rare case of pediatric Ph-like ALL with concomitant CRLF2 and ABL1 rearrangements. CRLF2 was fused with P2RY8, its most common fusion partner, whereas ABL1 was fused with MYO18B, a novel fusion partner that has not been previously reported. The 4-year-old female patient was treated using the national multicenter CCCG-ALL-2020 protocol with the addition of dasatinib at the end of induction when ABL1 rearrangement was confirmed by RNA-seq. Morphologically and molecularly, the patient remained in continuous remission until the last follow-up. To the best of our knowledge, this is the first case of Ph-like ALL harboring two distinct rearrangement categories.ConclusionsOur results identified that ABL1 rearrangement and CRLF2 rearrangement can coexist. The application of FISH, whole transcription sequencing, PCR can help us to have a more comprehensive understanding of ALL cytogenetics and molecular biology. Further studies are needed to explore the role of targeted therapies in such rare clinical scenarios.
Project description:Aneuploidy and translocations are hallmarks of B-progenitor acute lymphoblastic leukemia (ALL), but many individuals with this cancer lack recurring chromosomal alterations. Here we report a recurring interstitial deletion of the pseudoautosomal region 1 of chromosomes X and Y in B-progenitor ALL that juxtaposes the first, noncoding exon of P2RY8 with the coding region of CRLF2. We identified the P2RY8-CRLF2 fusion in 7% of individuals with B-progenitor ALL and 53% of individuals with ALL associated with Down syndrome. CRLF2 alteration was associated with activating JAK mutations, and expression of human P2RY8-CRLF2 together with mutated mouse Jak2 resulted in constitutive Jak-Stat activation and cytokine-independent growth of Ba/F3 cells overexpressing interleukin-7 receptor alpha. Our findings indicate that these two genetic lesions together contribute to leukemogenesis in B-progenitor ALL.
Project description:CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs. Solving the structure of type I JAK inhibitors ruxolitinib and baricitinib bound to the JAK2 tyrosine kinase domain enabled the rational design and optimization of a series of cereblon (CRBN)-directed JAK PROTACs utilizing derivatives of JAK inhibitors, linkers, and CRBN-specific molecular glues. The resulting JAK PROTACs were evaluated for target degradation, and activity was tested in a panel of leukemia/lymphoma cell lines and xenograft models of kinase-driven ALL. Multiple PROTACs were developed that degraded JAKs and potently killed CRLF2r cell lines, the most active of which also degraded the known CRBN neosubstrate GSPT1 and suppressed proliferation of CRLF2r ALL in vivo, e.g. compound 7 (SJ988497). Although dual JAK/GSPT1-degrading PROTACs were the most potent, the development and evaluation of multiple PROTACs in an extended panel of xenografts identified a potent JAK2-degrading, GSPT1-sparing PROTAC that demonstrated efficacy in the majority of kinase-driven xenografts that were otherwise unresponsive to type I JAK inhibitors, e.g. compound 8 (SJ1008030). Together, these data show the potential of JAK-directed protein degradation as a therapeutic approach in JAK-STAT-driven ALL and highlight the interplay of JAK and GSPT1 degradation activity in this context.
Project description:Overexpression of cytokine receptor-like factor 2 (CRLF2) due to chromosomal rearrangement has been observed in acute lymphoblastic leukemia (ALL) and reported to contribute to oncogenesis and unfavorable outcome in ALL. We studied B-ALL and T-ALL patients without CRLF2 rearrangement and observed that CRLF2 is significantly increased in a subset of these patients. Our study shows that high CRLF2expression correlates with high-risk ALL markers, as well as poor survival. We found that the IKZF1-encoded protein, Ikaros, directly binds to the CRLF2 promoter and regulates CRLF2 expression in leukemia cells. CK2 inhibitor, which can increase Ikaros activity, significantly increases Ikaros binding in ALL cells and suppresses CRLF2 expression in an Ikaros-dependent manner. CRLF2 expression is significantly higher in patients with IKZF1 deletion as compared to patients without IKZF1 deletion. Treatment with CK2 inhibitor also results in an increase in IKZF1 binding to the CRLF2 promoter and suppression of CRLF2 expression in primary ALL cells. We further observed that CK2 inhibitor induces increased H3K9me3 histone modifications in the CRLF2 promoter in ALL cell lines and primary cells. Taken together, our results demonstrate that high expression of CRLF2 correlates with high-risk ALL and short survival in patients without CRLF2 rearrangement. Our results are the first to demonstrate that the IKZF1-encoded Ikaros protein directly suppresses CRLF2 expression through enrichment of H3K9me3 in its promoter region. Our data also suggest that high CRLF2 expression works with the IKZF1 deletion to drive oncogenesis of ALL and has significance in an integrated prognostic model for adult high-risk ALL.
Project description:Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets.
Project description:The prognosis for adults with precursor B-cell acute lymphoblastic leukemia (B-ALL) remains poor, in part from a lack of therapeutic targets. We identified the type I cytokine receptor subunit CRLF2 in a functional screen for B-ALL-derived mRNA transcripts that can substitute for IL3 signaling. We demonstrate that CRLF2 is overexpressed in approximately 15% of adult and high-risk pediatric B-ALL that lack MLL, TCF3, TEL, and BCR/ABL rearrangements, but not in B-ALL with these rearrangements or other lymphoid malignancies. CRLF2 overexpression can result from translocation with the IGH locus or intrachromosomal deletion and is associated with poor outcome. CRLF2 overexpressing B-ALLs share a transcriptional signature that significantly overlaps with a BCR/ABL signature, and is enriched for genes involved in cytokine receptor and JAK-STAT signaling. In a subset of cases, CRLF2 harbors a Phe232Cys gain-of-function mutation that promotes constitutive dimerization and cytokine independent growth. A mutually exclusive subset harbors activating mutations in JAK2. In fact, all 22 B-ALLs with mutant JAK2 that we analyzed overexpress CRLF2, distinguishing CRLF2 as the key scaffold for mutant JAK2 signaling in B-ALL. Expression of WT CRLF2 with mutant JAK2 also promotes cytokine independent growth that, unlike CRLF2 Phe232Cys or ligand-induced signaling by WT CRLF2, is accompanied by JAK2 phosphorylation. Finally, cells dependent on CRLF2 signaling are sensitive to small molecule inhibitors of either JAKs or protein kinase C family kinases. Together, these findings implicate CRLF2 as an important factor in B-ALL with diagnostic, prognostic, and therapeutic implications.
Project description:Early age acute leukemia (EAL) shows a high frequency of KMT2A-rearrangements (KMT2A-r). Previous investigations highlighted double-strand breaks arising from maternal exposure to xenobiotics during pregnancy as a risk factor for EAL and KMT2A-r. In this case-control study, we investigated the relationship between EAL and genetic variants of the nonhomologous end-joining (XRCC6 rs5751129, XRCC4 rs6869366 and rs28360071), since they might affect DNA repair capacity, leading to KMT2A-r and leukemogenesis. Samples from 577 individuals (acute lymphoblastic leukemia-ALL, n=164; acute myeloid leukemia-AML, n=113; controls, n=300) were genotyped. No significant association was found for rs5751129 and rs6869366, whereas rs28360071 was associated with an increased risk for ALL with KMT2A-r (IIxID: OR - Odds ratio 2.23, CI 1.17-4.25, p=0.014). Bone marrow samples from ALL patients showed a higher expression of XRCC4 compared to AML patients (p=0.025). Human Splicing Finder 3.1 predicted that the deleted allele of rs28360071 is potentially associated with the activation of a 5' cryptic splice site in intron 3 of XRCC4. The sequencing of cDNA did not show any differences on the splicing process for the rs28360071 genotypes. Our results suggest that the deleted allele for rs28360071 increases the risk for ALL with KMT2A-r, but not by modifying the XRCC4 expression levels or its structure.
Project description:Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Project description:Chromosomal rearrangements are a hallmark of acute lymphoblastic leukemia (ALL) and are important ALL initiating events. We describe four different rearrangements of the erythropoietin receptor gene EPOR in Philadelphia chromosome-like (Ph-like) ALL. All of these rearrangements result in truncation of the cytoplasmic tail of EPOR at residues similar to those mutated in primary familial congenital polycythemia, with preservation of the proximal tyrosine essential for receptor activation and loss of distal regulatory residues. This resulted in deregulated EPOR expression, hypersensitivity to erythropoietin stimulation, and heightened JAK-STAT activation. Expression of truncated EPOR in mouse B cell progenitors induced ALL in vivo. Human leukemic cells with EPOR rearrangements were sensitive to JAK-STAT inhibition, suggesting a therapeutic option in high-risk ALL.
Project description:Chromosomal aneuploidy and translocations are hallmarks of acute lymphoblastic leukemia (ALL), but many patients lack a recurring chromosomal alteration. Here we report a recurring interstitial deletion of the pseudoautosomal region 1 of chromosomes X and Y in B-progenitor ALL that results in the expression of a novel fusion that juxtaposes the first non-coding exon of P2RY8 to the coding region of the CRLF2 (cytokine receptor like factor 2, or thymic stromal lymphopoietin receptor) gene. The P2RY8-CRLF2 fusion was identified in 7% of B-ALL cases, and was very common in ALL associated with Down syndrome (55% of cases) and was associated with the presence of JAK mutations. The P2RY8-CRLF2 fusion results in increased expression of CRLF2, a lymphoid signaling molecule that forms a heterodimeric complex with interleukin receptor 7 alpha. These findings identify a novel recurring chromosomal alteration in B-ALL, and suggest that perturbed CRLF2-mediated signaling is a key event in leukemogenesis in these cases. Profiling of tumor acquired DNA copy number alterations in 2 patients with Down syndrome associated B-progenitor acute lymphoblastic leukemia. Matched tumor and normal DNA was used for each array hybridization in each case.