Ontology highlight
ABSTRACT: Background
Protein C receptor (Procr) has recently been shown to mark resident adult stem cells in the mammary gland, vascular system, and pancreatic islets. More so, high Procr expression was also detected and used as indicator for subsets of triple-negative breast cancers (TNBCs). Previous study has revealed Procr as a target of Wnt/β-catenin signaling; however, direct upstream regulatory mechanism of Procr remains unknown. To comprehend the molecular role of Procr during physiology and pathology, elucidating the upstream effectors of Procr is necessary. Here, we provide a system for screening negative regulators of Procr, which could be adapted for broad molecular analysis on membrane proteins.Results
We established a screening system which combines CRISPR-Cas9 guided gene disruption with fluorescence activated cell sorting technique (FACS). CommaDβ (murine epithelial cells line) was used for the initial Procr upstream effector screening using lentiviral CRISPR-gRNA library. Shortlisted genes were further validated through individual lentiviral gRNA infection followed by Procr expression evaluation. Adam17 was identified as a specific negative inhibitor of Procr expression. In addition, MDA-MB-231 cells and Hs578T cells (human breast cancer cell lines) were used to verify the conserved regulation of ADAM17 over PROCR expression.Conclusion
We established an efficient CRISPR-Cas9/FACS screening system, which identifies the regulators of membrane proteins. Through this system, we identified Adam17 as the negative regulator of Procr membrane expression both in mammary epithelial cells and breast cancer cells.
SUBMITTER: Wu T
PROVIDER: S-EPMC8290623 | biostudies-literature |
REPOSITORIES: biostudies-literature