Project description:BackgroundThe banning of mass-gathering indoor events to prevent SARS-CoV-2 spread has had an important effect on local economies. Despite growing evidence on the suitability of antigen-detecting rapid diagnostic tests (Ag-RDT) for mass screening at the event entry, this strategy has not been assessed under controlled conditions. We aimed to assess the effectiveness of a prevention strategy during a live indoor concert.MethodsWe designed a randomised controlled open-label trial to assess the effectiveness of a comprehensive preventive intervention for a mass-gathering indoor event (a live concert) based on systematic same-day screening of attendees with Ag-RDTs, use of facial masks, and adequate air ventilation. The event took place in the Sala Apolo, Barcelona, Spain. Adults aged 18-59 years with a negative result in an Ag-RDT from a nasopharyngeal swab collected immediately before entering the event were randomised 1:1 (block randomisation stratified by age and gender) to either attend the indoor event for 5 hours or go home. Nasopharyngeal specimens used for Ag-RDT screening were analysed by real-time reverse-transcriptase PCR (RT-PCR) and cell culture (Vero E6 cells). 8 days after the event, a nasopharyngeal swab was collected and analysed by Ag-RDT, RT-PCR, and a transcription-mediated amplification test (TMA). The primary outcome was the difference in incidence of RT-PCR-confirmed SARS-CoV-2 infection at 8 days between the control and the intervention groups, assessed in all participants who were randomly assigned, attended the event, and had a valid result for the SARS-CoV-2 test done at follow-up. The trial is registered at ClinicalTrials.gov, NCT04668625.FindingsParticipant enrollment took place during the morning of the day of the concert, Dec 12, 2020. Of the 1140 people who responded to the call and were deemed eligible, 1047 were randomly assigned to either enter the music event (experimental group) or continue with normal life (control group). Of the 523 randomly assigned to the experimental group, 465 were included in the analysis of the primary outcome (51 did not enter the event and eight did not take part in the follow-up assessment), and of the 524 randomly assigned to the control group, 495 were included in the final analysis (29 did not take part in the follow-up). At baseline, 15 (3%) of 495 individuals in the control group and 13 (3%) of 465 in the experimental group tested positive on TMA despite a negative Ag-RDT result. The RT-PCR test was positive in one case in each group and cell viral culture was negative in all cases. 8 days after the event, two (<1%) individuals in the control arm had a positive Ag-RDT and PCR result, whereas no Ag-RDT nor RT-PCR positive results were found in the intervention arm. The Bayesian estimate for the incidence between the experimental and control groups was -0·15% (95% CI -0·72 to 0·44).InterpretationOur study provides preliminary evidence on the safety of indoor mass-gathering events during a COVID-19 outbreak under a comprehensive preventive intervention. The data could help restart cultural activities halted during COVID-19, which might have important sociocultural and economic implications.FundingPrimavera Sound Group and the #YoMeCorono Initiative.TranslationFor the Spanish translation of the abstract see Supplementary Materials section.
Project description:Conflicting results on the cardiovascular involvement after SARS-CoV-2 infection generated concerns on the safety of return-to-play (RTP) in athletes. The aim of this study was to evaluate the prevalence of cardiac involvement after COVID-19 in Olympic athletes, who had previously been screened in our pre-participation program. Since November 2020, all consecutive Olympic athletes presented to our Institute after COVID-19 prior to RTP were enrolled. The protocol was dictated by the Italian governing bodies and comprised: 12-lead ECG, blood test, cardiopulmonary exercise test (CPET), 24-h ECG monitoring, and spirometry. Cardiovascular Magnetic Resonance (CMR) was also performed. All Athletes were previously screened in our Institute as part of their periodical pre-participation evaluation. Forty-seven Italian Olympic athletes were enrolled: 83% asymptomatic, 13% mildly asymptomatic, and 4% had pneumonia. Uncommon premature ventricular contractions (PVCs) were found in 13% athletes; however, only 6% (n = 3) were newly detected. All newly diagnosed uncommon PVCs were detected by CPET. One of these three athletes had evidence for acute myocarditis by CMR, along with Troponin raise; another had pericardial effusion. No one of the remaining athletes had abnormalities detected by CMR. Cardiac abnormalities in Olympic athletes screened after COVID-19 resolution were detected in a minority, and were associated with new ventricular arrhythmias. Only one had evidence for acute myocarditis (in the presence of symptoms and elevated biomarkers). Our data support the efficacy of the clinical assessment including exercise-ECG to raise suspicion for cardiovascular abnormalities after COVID-19. Instead, the routine use of CMR as a screening tool appears unjustified.
Project description:BackgroundMass indoor gatherings were banned in early 2020 to prevent the spread of SARS-CoV-2. We aimed to assess, under controlled conditions, whether infection rates among attendees at a large, indoor gathering event would be similar to those in non-attendees, given implementation of a comprehensive prevention strategy including antigen-screening within 3 days, medical mask wearing, and optimised ventilation.MethodsThe non-inferiority, prospective, open-label, randomised, controlled SPRING trial was done on attendees at a live indoor concert held in the Accor Arena on May 29, 2021 in Paris, France. Participants, aged 18-45 years, recruited via a dedicated website, had no comorbidities, COVID-19 symptoms, or recent case contact, and had had a negative rapid antigen diagnostic test within 3 days before the concert. Participants were randomly allocated in a 2:1 ratio to the experimental group (attendees) or to the control group (non-attendees). The allocation sequence was computer-generated by means of permuted blocks of sizes three, six, or nine, with no stratification. The primary outcome measure was the number of patients who were SARS-CoV-2-positive by RT-PCR test on self-collected saliva 7 days post-gathering in the per-protocol population (non-inferiority margin <0·35%). This trial is registered with ClinicalTrials.gov, NCT04872075.FindingsBetween May 11 and 25, 2021, 18 845 individuals registered on the dedicated website, and 10 953 were randomly selected for a pre-enrolment on-site visit. Among 6968 who kept the appointment and were screened, 6678 participants were randomly assigned (4451 were assigned to be attendees and 2227 to be non-attendees; median age 28 years; 59% women); 88% (3917) of attendees and 87% (1947) of non-attendees complied with follow-up requirements. The day 7 RT-PCR was positive for eight of the 3917 attendees (observed incidence, 0·20%; 95% CI 0·09-0·40) and three of the 1947 non-attendees (0·15%; 0·03-0·45; absolute difference, 95% CI -0·26% to 0·28%), findings that met the non-inferiority criterion for the primary endpoint.InterpretationParticipation in a large, indoor, live gathering without physical distancing was not associated with increased SARS-CoV-2-transmission risk, provided a comprehensive preventive intervention was implemented.FundingFrench Ministry of Health.TranslationFor the French translation of the abstract see Supplementary Materials section.
Project description:Environmental surveillance of pathogens underlying infectious disease is critical to ensure public health. Recent efforts to track SARS-CoV-2 have utilized wastewater sampling to infer community trends in viral abundance and variant composition. Indoor dust has also been used for building-level inferences, though to date no sequencing data providing variant-scale resolution have been reported from dust samples, and strategies to monitor circulating variants in dust are needed to help inform public health decisions. In this study, we demonstrate that SARS-CoV-2 lineages can be detected and sequenced from indoor bulk dust samples. We collected 93 vacuum bags from April 2021 to March 2022 from buildings on The Ohio State University's (OSU) Columbus campus, and the dust was used to develop and apply an amplicon-based whole-genome sequencing protocol to identify the variants present and estimate their relative abundances. Three variants of concern were detected in the dust: Alpha, Delta, and Omicron. Alpha was found in our earliest sample in April 2021 with an estimated frequency of 100%. Delta was the primary variant present from October of 2021 to January 2022, with an average estimated frequency of 91% (±1.3%). Omicron became the primary variant in January 2022 and was the dominant strain in circulation through March with an estimated frequency of 87% (±3.2%). The detection of these variants on OSU's campus correlates with the circulation of these variants in the surrounding population (Delta p<0.0001 and Omicron p = 0.02). Overall, these results support the hypothesis that dust can be used to track COVID-19 variants in buildings.
Project description:This study aimed to investigate the potential contamination of SARS-CoV-2 in indoor settled dust and surfaces of Amir Al-Muminin hospital in Maragheh, Iran. Samples were taken from surfaces and settled dust using a passive approach and particulate matter (PM) using an active approach from different hospital wards. SARS-CoV-2 was detected in 15% of settled dust samples (N = 4/26) and 10% of surface samples (3/30). SARS-CoV-2 has been detected in 13.8% and 9.1% of the dust samples collected at a distance of fewer than 1 m and more than 3 m from the patient bed, respectively. SARS-CoV-2 was found in 11% of surface samples from low-touch surfaces and 8% from high touch surfaces. The relationship between PM2.5, PM10, humidity, temperature, and positive samples of SARS-CoV-2 was investigated. A positive correlation was observed between relative humidity, PM2.5, and positive SARS-CoV-2 samples. Principal component analysis (PCA) suggested positive correlation between positive SARS-CoV-2 samples, relative humidity, and PM2.5. Risk assessment results indicated that the annual mean infection risk of SARS-CoV-2 for hospital staff with illness and death was 2.6 × 10-2 and 7.7 × 10-4 per person per year. Current findings will help reduce the permanence of viral particles in the COVID 19 tragedy and future similar pandemics e.g., novel influenza viruses.
Project description:Environmental contamination caused by COVID-19 patients could be a medium of transmission. Previous reports of SARS-CoV-2 in environmental surfaces were about short-term contamination. This study investigated SARS-CoV-2 RNA existence in room-temperature and low-temperature environments long after exposure (>28 days). A department store, where a COVID-19 outbreak was occurred in January 2020 (the epicenter of 43 COVID-19 patients), and a patient's apartment were included as room-temperature environments after being blocked for 57 days and 48 days, respectively. Seven cold storages and imported frozen foods inside were included as low-temperature environments (under -18 °C). Twenty food markets with potential contamination of imported frozen foods were also included to study the consecutive contamination. Information about temperature, relative humidity, and the number of days of environmental samples since the last exposure was collected and analyzed. In sum, 11,808 swab samples were collected before disinfection, of which 35 samples were positive. Persistent contamination of SARS-CoV-2 RNA was identified in the apartment (6/19), the department store (3/50), food packages in cold storages (23/1360), environmental surfaces of cold storages (2/345), and a package in the food market (1/10,034). Two positive samples were isolated from the bathroom of the apartment (66.7 %, 2/3), and doorknobs were proved with contamination in the apartment (40 %, 2/5) and cold storage (33.3 %, 1/3). The epidemiology information and environmental contamination results of an imported frozen food related COVID-19 case (138th COVID-19 patient in Tianjin) were analyzed. Based on the Ct values, the number of copies of two target genes was calculated by standard curves and linear regressions. In conclusion, SARS-CoV-2 RNA can be detected in room-temperature environments at least 57 days after the last exposure, much longer than previous reports. Based on the results of this study and previous studies, infectious SARS-CoV-2 could exist for at least 60 days on the surface of cold-chain food packages. Doorknobs and toilets (bathrooms) were important positions in COVID-19 control. High-risk populations of cold-chain-related logistic operations, such as porters, require strict prevention and high-level personal protection.
Project description:A live music concert is a pleasurable social event that is among the most visceral and memorable forms of musical engagement. But what inspires listeners to attend concerts, sometimes at great expense, when they could listen to recordings at home? An iconic aspect of popular concerts is engaging with other audience members through moving to the music. Head movements, in particular, reflect emotion and have social consequences when experienced with others. Previous studies have explored the affiliative social engagement experienced among people moving together to music. But live concerts have other features that might also be important, such as that during a live performance the music unfolds in a unique and not predetermined way, potentially increasing anticipation and feelings of involvement for the audience. Being in the same space as the musicians might also be exciting. Here we controlled for simply being in an audience to examine whether factors inherent to live performance contribute to the concert experience. We used motion capture to compare head movement responses at a live album release concert featuring Canadian rock star Ian Fletcher Thornley, and at a concert without the performers where the same songs were played from the recorded album. We also examined effects of a prior connection with the performers by comparing fans and neutral-listeners, while controlling for familiarity with the songs, as the album had not yet been released. Head movements were faster during the live concert than the album-playback concert. Self-reported fans moved faster and exhibited greater levels of rhythmic entrainment than neutral-listeners. These results indicate that live music engages listeners to a greater extent than pre-recorded music and that a pre-existing admiration for the performers also leads to higher engagement.