Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein.
Ontology highlight
ABSTRACT: Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa. Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in combination with high performance liquid chromatography and mass spectrometric analysis of the products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.
Project description:The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Project description:Structural S1 domains belong to the superfamily of oligosaccharide/oligonucleotide-binding fold domains, which are highly conserved from prokaryotes to higher eukaryotes and able to function in RNA binding. An important feature of this family is the presence of several copies of the structural domain, the number of which is determined in a strictly limited range from one to six. Despite the strong tendency for the aggregation of several amyloidogenic regions in the family of the ribosomal S1 proteins, their fibril formation process is still poorly understood. Here, we combined computational and experimental approaches for studying some features of the amyloidogenic regions in this protein family. The FoldAmyloid, Waltz, PASTA 2.0 and Aggrescan programs were used to assess the amyloidogenic propensities in the ribosomal S1 proteins and to identify such regions in various structural domains. The thioflavin T fluorescence assay and electron microscopy were used to check the chosen amyloidogenic peptides' ability to form fibrils. The bioinformatics tools were used to study the amyloidogenic propensities in 1331 ribosomal S1 proteins. We found that amyloidogenicity decreases with increasing sizes of proteins. Inside one domain, the amyloidogenicity is higher in the terminal parts. We selected and synthesized 11 amyloidogenic peptides from the Escherichia coli and Thermus thermophilus ribosomal S1 proteins and checked their ability to form amyloids using the thioflavin T fluorescence assay and electron microscopy. All 11 amyloidogenic peptides form amyloid-like fibrils. The described specific amyloidogenic regions are actually responsible for the fibrillogenesis process and may be potential targets for modulating the amyloid properties of bacterial ribosomal S1 proteins.
Project description:Controlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the "parent" protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning. The aim of the work was to search for peptides based on the ribosomal S1 protein from T. thermophilus, exhibiting both aggregation and antibacterial properties. The biological system of the response of Gram-negative bacteria T. thermophilus to the action of peptides was characterized. Among the seven studied peptides, designed based on the S1 protein sequence, the R23I (modified by the addition of HIV transcription factor fragment for bacterial cell penetration), R23T (modified), and V10I (unmodified) peptides have biological activity that inhibits the growth of T. thermophilus cells, that is, they have antimicrobial activity. But, only the R23I peptide had the most pronounced activity comparable with the commercial antibiotics. We have compared the proteome of peptide-treated and intact T. thermophilus cells. These important data indicate a decrease in the level of energy metabolism and anabolic processes, including the processes of biosynthesis of proteins and nucleic acids. Under the action of 20 and 50 μg/mL R23I, a decrease in the number of proteins in T. thermophilus cells was observed and S1 ribosomal protein was absent. The obtained results are important for understanding the mechanism of amyloidogenic peptides with antimicrobial activity and can be used to develop new and improved analogues.
Project description:Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
Project description:The sophisticated antibiotic resistance mechanism of Pseudomonas aeruginosa has urged the development of alternative antibacterial strategies. Phage therapy has been proven successful for the treatment of multidrug-resistant infections. In this study, we reported two virulent P. aeruginosa phages, vB_PaeM_SCUT-S1 (S1) and vB_PaeM_SCUT-S2 (S2), which were characterized at morphological, genomic, and proteomic levels. Phages S1 and S2 were assigned to the Myoviridae family. The genome sequencing showed that the genome size of Phage S1 was 66,046 bp and that of Phage S2 was 94,434 bp. The phylogenetic tree indicated that the two phages were distantly related to each other and were classified in the genera Pbunavirus and Pakpunavirus respectively. Thirty-one proteins were identified for each phage by mass spectrometry and were used to substantiate the function of the predicted coding genes. The two phages inhibited the growth of P. aeruginosa strain PAO1 at low multiplicity of infection levels and had good performance both on preventing biofilm formation and eradicating preformed biofilms. They were also stable over a wide range of temperature and pH values, supporting their potential use in the treatment of P. aeruginosa infections.
Project description:One of the major proteins secreted by Pseudomonas aeruginosa is a 43-kDa protein, which is cleaved by elastase into smaller fragments, including a 30-kDa and a 23-kDa fragment. The N-terminal 23-kDa fragment was previously suggested as corresponding to a staphylolytic protease and was designated LasD (S. Park and D. R. Galloway, Mol. Microbiol. 16:263-270, 1995). However, the sequence of the gene encoding this 43-kDa protein revealed that the N-terminal half of the protein is homologous to the chitin-binding proteins CHB1 of Streptomyces olivaceoviridis and CBP21 of Serratia marcescens and to the cellulose-binding protein p40 of Streptomyces halstedii. Furthermore, a short C-terminal fragment shows homology to a part of chitinase A of Vibrio harveyi. The full-length 43-kDa protein could bind chitin and was thereby protected against the proteolytic activity of elastase, whereas the degradation products did not bind chitin. The purified 43-kDa chitin-binding protein had no staphylolytic activity, and comparison of the enzymatic activities in the extracellular medium of a wild-type strain and a chitin-binding protein-deficient mutant indicated that the 43-kDa protein supports neither chitinolytic nor staphylolytic activity. We conclude that the 43-kDa protein, which was found to be produced by many clinical isolates of P. aeruginosa, is a chitin-binding protein, and we propose to name it CbpD (chitin-binding protein D).
Project description:ObjectivesTo evaluate the resolution and reliability of the rpsA gene, encoding ribosomal protein S1, as a novel biomarker for mycobacteria species identification.MethodsA segment of the rpsA gene (565 bp) was amplified by PCR from 42 mycobacterial reference strains, 172 nontuberculosis mycobacteria clinical isolates, and 16 M. tuberculosis complex clinical isolates. The PCR products were sequenced and aligned by using the multiple alignment algorithm in the MegAlign package (DNASTAR) and the MEGA program. A phylogenetic tree was constructed by the neighbor-joining method.ResultsComparative sequence analysis of the rpsA gene provided the basis for species differentiation within the genus Mycobacterium. Slow- and rapid-growing groups of mycobacteria were clearly separated, and each mycobacterial species was differentiated as a distinct entity in the phylogenetic tree. The sequences discrepancy was obvious between M. kansasii and M. gastri, M. chelonae and M. abscessus, M. avium and M. intracellulare, and M. szulgai and M. malmoense, which cannot be achieved by 16S ribosomal DNA (rDNA) homologue genes comparison. 183 of the 188 (97.3%) clinical isolates, consisting of 8 mycobacterial species, were identified correctly by rpsA gene blast.ConclusionsOur study indicates that rpsA sequencing can be used effectively for mycobacteria species identification as a supplement to 16S rDNA sequence analysis.
Project description:The rpoS gene encodes the stationary-phase sigma factor (RpoS or sigma(s)), which was identified in several gram-negative bacteria as a central regulator controlling the expression of genes involved in cell survival in response to cessation of growth (stationary phase) and providing cross-protection against various stresses. In Pseudomonas aeruginosa, the levels of sigma(s) increase dramatically at the onset of the stationary phase and are regulated at the transcriptional and posttranscriptional levels. The P. aeruginosa rpoS gene is transcribed as a monocistronic rpoS mRNA transcript comprised of an unusually long 373-bp 5' untranslated region (5' UTR). In this study, the 5' UTR and total protein extracts from P. aeruginosa logarithmic and stationary phases of growth were used in order to investigate the protein-RNA interactions that may modulate the translational process. It was observed that a 69-kDa protein, which corresponded to ribosomal protein S1, preferentially binds the 5' UTR of the rpoS mRNA in the logarithmic phase and not in the stationary phase. This is the first report of a protein-rpoS mRNA 5' UTR interaction in P. aeruginosa, and the possible involvement of protein S1 in translation regulation of rpoS is discussed.
Project description:Pyocins S1 and S2 are S-type bacteriocins of Pseudomonas aeruginosa with different receptor recognition specificities. The genetic determinants of these pyocins have been cloned from the chromosomes of P. aeruginosa NIH-H and PAO, respectively. Each determinant constitutes an operon encoding two proteins of molecular weights 65,600 and 10,000 (pyocin S1) or 74,000 and 10,000 (pyocin S2) with a characteristic sequence (P box), a possible regulatory element involved in the induction of pyocin production, in the 5' upstream region. These pyocins have almost identical primary sequences; only the amino-terminal portions of the large proteins are substantially different. The sequence homology suggests that pyocins S1 and S2, like pyocin AP41, originated from a common ancestor of the E2 group colicins. Purified pyocins S1 and S2 make up a complex of the two proteins. Both pyocins cause breakdown of chromosomal DNA as well as complete inhibition of lipid synthesis in sensitive cells. The large protein, but not the pyocin complex, shows in vitro DNase activity. This activity is inhibited by the small protein of either pyocin. Putative domain structures of these pyocins and their killing mechanism are discussed.