Project description:Primary refractory/relapsed diffuse large B-cell lymphoma (rrDLBCL) is an unresolved issue for DLBCL treatment and new treatments to overcome resistance is required. To explore the genetic mechanisms underlying treatment resistance in rrDLBCL and to identify candidate genes, we performed targeted deep sequencing of 430 lymphoma-related genes from 58 patients diagnosed with rrDLBCL. Genetic alterations found between the initial biopsy and biopsy at recurrence or refractory disease were investigated. The genes most frequently altered (> 20%) were (in decreasing order of frequency) CDKN2A, PIM1, CD79B, TP53, MYD88, MYC, BTG2, BTG1, CDKN2B, DTX1, CD58, ETV6, and IRF4. Genes mutation of which in pretreatment sample were associated with poor overall survival included NOTCH1, FGFR2, BCL7A, BCL10, SPEN and TP53 (P < 0.05). FGFR2, BCL2, BCL6, BCL10, and TP53 were associated with poor progression-free survival (P < 0.05). Most mutations were truncal and were maintained in both the initial biopsy and post-treatment biopsy with high dynamics of subclones. Immune-evasion genes showed increased overall mutation frequency (CD58, B2M) and variant allele fraction (CD58), and decreased copy number (B2M, CD70) at the post-treatment biopsy. Using the established mutational profiles and integrative analysis of mutational evolution, we identified information about candidate genes that may be useful for the development of future treatment strategies.
Project description:Checkpoint inhibitors (CPIs) are routinely employed in relapsed/refractory classical Hodgkin lymphoma. Nonetheless, persistent long-term responses are uncommon, and one-third of patients are refractory. Several reports have suggested that treatment with CPIs may re-sensitize patients to chemotherapy, however there is no consensus on the optimal chemotherapy regimen and subsequent consolidation strategy. In this retrospective study we analysed the response to rechallenge with chemotherapy after CPI failure. Furthermore, we exploratively characterized the clonal evolution profile of a small sample of patients (n = 5) by employing the CALDER approach. Among the 28 patients included in the study, 17 (71%) were primary refractory and 26 (92%) were refractory to the last chemotherapy prior to CPIs. Following rechallenge with chemotherapy, response was recorded in 23 (82%) patients experiencing complete remission and 3 (11%) patients experiencing partial remission. The tumour evolution of the patients inferred by CALDER seemingly occurred prior to the first cycle of therapy and was characterized either by linear or branching evolution patterns. Twenty-five patients proceeded to allogeneic stem cell transplantation. At a median follow-up of 21 months, median PFS and OS were not reached. In conclusion, patients who fail CPIs can be effectively rescued by salvage chemotherapy and bridged to allo-SCT/auto-SCT.
Project description:Mutations in the nucleophosmin 1 (NPM1) gene are considered as a founder event in the pathogenesis of acute myeloid leukemia (AML). To address the role of clonal evolution in relapsed NPM1 mutated (NPM1mut) AML, we applied high-resolution genome-wide single-nucleotide polymorphism (SNP) array profiling to detect copy number alterations (CNA) and uniparental disomies (UPD) and performed comprehensive gene mutation screening in 53 paired bone marrow/peripheral blood samples obtained at diagnosis and relapse. At diagnosis, 15 aberrations (CNAs, n=10; UPDs, n=5) were identified in 13 patients (25%), whereas at relapse 56 genomic alterations (CNAs, n=46; UPDs, n=10) were detected in 29 patients (55%) indicating an increase in genomic complexity. Recurrent aberrations acquired at relapse included deletions affecting tumor suppressor genes [ETV6 (n=3), TP53 (n=2), NF1 (n=2), WT1 (n=3), FHIT (n=2)] and homozygous FLT3 mutations acquired via UPD13q (n=7). DNMT3A mutations (DNMT3Amut) showed the highest stability (97%). Persistence of DNMT3Amut in 5 patients who lost NPM1mut at relapse suggests that DNMT3Amut may precede NPM1mut in AML pathogenesis. Of note, all relapse samples shared at least one genetic aberration with the matched primary AML sample implying common ancestral clones. In conclusion, our study reveals novel insights into clonal evolution in NPM1mut AML. Bone marrow or peripheral blood samples from diagnosis, remission and relapse of 53 NPM1 mutated AML patient were analyzed on the Affymetrix Genome-Wide Human SNP 6.0 Array. Raw data (CEL-Files) were transformed to genotyping files (CHP) with Genotyping Console Version 4.2 from Affymetrix. Bioinformatic evaluation of CNAs was performed using dChipSNP and circular binary segmentation .
Project description:Little information is available about the role of certain mutations for clonal evolution and the clinical outcome during relapse in diffuse large B-cell lymphoma (DLBCL). Therefore, we analyzed formalin-fixed-paraffin-embedded tumor samples from first diagnosis, relapsed or refractory disease from 28 patients using next-generation sequencing of the exons of 104 coding genes. Non-synonymous mutations were present in 74 of the 104 genes tested. Primary tumor samples showed a median of 8 non-synonymous mutations (range: 0-24) with the used gene set. Lower numbers of non-synonymous mutations in the primary tumor were associated with a better median OS compared with higher numbers (28 versus 15 months, p=0.031). We observed three patterns of clonal evolution during relapse of disease: large global change, subclonal selection and no or minimal change possibly suggesting preprogrammed resistance. We conclude that targeted re-sequencing is a feasible and informative approach to characterize the molecular pattern of relapse and it creates novel insights into the role of dynamics of individual genes.
Project description:Mutations in the nucleophosmin 1 (NPM1) gene are considered as a founder event in the pathogenesis of acute myeloid leukemia (AML). To address the role of clonal evolution in relapsed NPM1 mutated (NPM1mut) AML, we applied high-resolution genome-wide single-nucleotide polymorphism (SNP) array profiling to detect copy number alterations (CNA) and uniparental disomies (UPD) and performed comprehensive gene mutation screening in 53 paired bone marrow/peripheral blood samples obtained at diagnosis and relapse. At diagnosis, 15 aberrations (CNAs, n=10; UPDs, n=5) were identified in 13 patients (25%), whereas at relapse 56 genomic alterations (CNAs, n=46; UPDs, n=10) were detected in 29 patients (55%) indicating an increase in genomic complexity. Recurrent aberrations acquired at relapse included deletions affecting tumor suppressor genes [ETV6 (n=3), TP53 (n=2), NF1 (n=2), WT1 (n=3), FHIT (n=2)] and homozygous FLT3 mutations acquired via UPD13q (n=7). DNMT3A mutations (DNMT3Amut) showed the highest stability (97%). Persistence of DNMT3Amut in 5 patients who lost NPM1mut at relapse suggests that DNMT3Amut may precede NPM1mut in AML pathogenesis. Of note, all relapse samples shared at least one genetic aberration with the matched primary AML sample implying common ancestral clones. In conclusion, our study reveals novel insights into clonal evolution in NPM1mut AML.
Project description:Relapsed acute lymphoblastic leukaemia (ALL) is associated with resistance to chemotherapy and poor prognosis. Gain-of-function mutations in the 5'-nucleotidase, cytosolic II (NT5C2) gene induce resistance to 6-mercaptopurine and are selectively present in relapsed ALL. Yet, the mechanisms involved in NT5C2 mutation-driven clonal evolution during the initiation of leukaemia, disease progression and relapse remain unknown. Here we use a conditional-and-inducible leukaemia model to demonstrate that expression of NT5C2(R367Q), a highly prevalent relapsed-ALL NT5C2 mutation, induces resistance to chemotherapy with 6-mercaptopurine at the cost of impaired leukaemia cell growth and leukaemia-initiating cell activity. The loss-of-fitness phenotype of NT5C2+/R367Q mutant cells is associated with excess export of purines to the extracellular space and depletion of the intracellular purine-nucleotide pool. Consequently, blocking guanosine synthesis by inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH) induced increased cytotoxicity against NT5C2-mutant leukaemia lymphoblasts. These results identify the fitness cost of NT5C2 mutation and resistance to chemotherapy as key evolutionary drivers that shape clonal evolution in relapsed ALL and support a role for IMPDH inhibition in the treatment of ALL.
Project description:Single antigen-targeted chimeric antigen receptor (CAR) T-cell therapy may be insufficient to induce a durable response in pediatric aggressive B-cell lymphomas. This clinical trial examined the feasibility of sequential different B-cell antigen-targeted CAR T-cell therapy for pediatric relapsed/refractory (R/R) Burkitt lymphoma. Twenty-three patients received the first CD19 CAR T-cell infusion. The patients who did not achieve an ongoing complete response (CR) underwent 1 or more sequential infusions of CAR T-cell therapy that targeted CD22 followed by CD20 according to their disease status and CAR T-cell persistence after each infusion. The median time from the last infusion to the cutoff date was 17 months (range, 15-23 months). The estimated 18-month CR rate was 78% (95% confidence interval [CI], 54%-91%). The estimated 18-month progression-free survival rate was 78% (95% CI, 55%-90%), with 78% (95% CI, 37%-94%) in patients with bulky disease and 60% (95% CI, 25%-83%) in patients with central nervous system (CNS) involvement. During the first CD19 CAR T-cell infusion, grade ≥3 cytokine release syndrome (CRS) occurred in 34.8% and neurotoxicity occurred in 21.7% of all patients. During subsequent infusions, there were only a few incidences of grade >2 CRS and neurotoxicity. All adverse events were reversible. The severity of neurotoxicity was not significantly different between patients with CNS involvement and those who did not have CNS involvement. Sequential CAR T-cell therapy may result in a durable response and is safe in pediatric R/R Burkitt lymphoma. Patients with CNS involvement may benefit from sequential CAR T-cell therapy. This trial was registered at www.chictr.org.cn/index.aspx as #ChiCTR1800014457.
Project description:Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling those of Burkitt lymphoma but lacks the MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether this lymphoma is a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphoma-related genes in 11 cases. Most patients had localized nodal disease and a favorable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. The patients with Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETS1, EP300, and GNA13 However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center-derived lymphoma closer to high-grade B-cell lymphoma or diffuse large B-cell lymphoma than to Burkitt lymphoma.
Project description:The potential role antigens play in growth stimulation or in clonal selection of follicular lymphomas is unknown. To study this issue, we sequenced the immunoglobulin heavy chain variable region genes expressed by a follicular lymphoma from multiple biopsy specimens and also cloned and sequenced the corresponding germ-line variable gene from this patient. Comparison to the germ-line gene revealed numerous nucleotide substitutions in all of the lymphoma variable gene sequences. Some of the substitutions may have occurred in the nonmalignant precursor B cell that gave rise to this lymphoma because they were shared among all of the variable genes, but many of the mutations accumulated as the malignant clone expanded. The mutations were distributed in such a way that strongly suggested the majority of tumor cells had been positively selected through their antigen receptor. This was especially evident for the mutations that developed late in the clonal evolution of this lymphoma. These findings indicate that antigen stimulation may be involved in the growth of follicular lymphoma tumors.