Unknown

Dataset Information

0

Clinical and Genetic Predictive Models for the Prediction of Pathological Complete Response to Optimize the Effectiveness for Trastuzumab Based Chemotherapy.


ABSTRACT:

Background

Trastuzumab shows excellent benefits for HER2+ breast cancer patients, although 20% treated remain unresponsive. We conducted a retrospective cohort study to optimize neoadjuvant chemotherapy and trastuzumab treatment in HER2+ breast cancer patients.

Methods

Six hundred patients were analyzed to identify clinical characteristics of those not achieving a pathological complete response (pCR) to develop a clinical predictive model. Available RNA sequence data was also reviewed to develop a genetic model for pCR.

Results

The pCR rate was 39.8% and pCR was associated with superior disease free survival and overall survival. ER negativity and PR negativity, higher HER2 IHC scores, higher Ki-67, and trastuzumab use were associated with improved pCR. Weekly paclitaxel and carboplatin had the highest pCR rate (46.70%) and the anthracycline+taxanes regimen had the lowest rate (11.11%). Four published GEO datasets were analyzed and a 10-gene model and immune signature for pCR were developed. Non-pCR patients were ER+PR+ and had a lower immune signature and gene model score. Hormone receptor status and immune signatures were independent predictive factors of pCR.

Conclusion

Hormone receptor status and a 10-gene model could predict pCR independently and may be applied for patient selection and drug effectiveness optimization.

SUBMITTER: Li L 

PROVIDER: S-EPMC8319743 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2007-11-23 | GSE6861 | GEO
| S-EPMC5386667 | biostudies-literature
| S-EPMC9753128 | biostudies-literature
| S-EPMC4512876 | biostudies-literature
| S-EPMC6078135 | biostudies-literature
| S-EPMC8365907 | biostudies-literature
| S-EPMC8886524 | biostudies-literature
| S-EPMC8204500 | biostudies-literature
| S-EPMC8093630 | biostudies-literature
| S-EPMC4716543 | biostudies-literature