Project description:Six out of ten patients in a hematopoietic stem cell gene therapy (GT) trial for Wiskott-Aldrich syndrome (WAS) developed T-cell acute lymphoblastic leukemia (T-ALL) associated with gamma-retroviral vector integration at the LMO2 locus. We hypothesized that detailed molecular analysis of T-ALL driven by temporally defined first deregulation of LMO2 might offer valuable insights into the pathogenesis of GT-associated and sporadic T-ALL (HIPO project 007). In all six patients whole-genome and transcriptome sequencing demonstrated that in addition to oncogenic chromosomal translocations involving the T-cell receptor loci, retrovirally induced leukemias faithfully recapitulated secondary genomic events observed in sporadic T-ALL. Multiple genetic events culminated in the development of a rapidly proliferating leukemic clone and onset of clinical manifestation at 1.3 to 5 years after infusion of the gene corrected transplant. These genetic alterations affected NOTCH1 and PI3K signaling, cell cycle regulation as wells as T-cell transcription factors LEF1 and TCF1. Two of the six cases displayed a phenotype reminiscent of early immature T-ALLs, and lacked additional T-ALL typical alterations. Our analysis shows that insertional mutagenesis involving the LMO2 locus triggers T-ALL development due to diverse genetic alterations in large parts, but not exclusively, in known T-ALL driver genes, demonstrating the molecular diversity of GT-associated T-ALL.
Project description:Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise subclassification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase-driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance.
Project description:To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.
Project description:Refractory and relapsed acute myeloid leukemia (AML) and T-lineage leukemia have poor prognosis and limited therapeutic options. Adoptive cellular immunotherapies are emerging as an effective treatment for patients with chemotherapy refractory hematological malignancies. Indeed, the use of unselected donor lymphocyte infusions has demonstrated successes in treating patients with AML and T-lineage leukemia post-allogeneic transplantation. The development of ex vivo manipulation techniques such as genetic modification or selection and expansion of individual cellular components has permitted the clinical translation of a wide range of promising cellular therapies for AML and T-cell acute lymphoblastic leukemia. Here, we will review clinical studies to date using adoptive cell therapy approaches and outline the major challenges limiting the development of safe and effective cell therapies for both types of acute leukemia.
Project description:T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment.
Project description:Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Project description:The SIL (SCL interrupting locus) gene was initially discovered at the site of a genomic rearrangement in a T-cell acute lymphoblastic leukemia cell line. This rearrangement, which occurs in a remarkably site-specific fashion, is present in the leukemic cells of 16 to 26% of patients with T-cell acute lymphoblastic leukemia. We have now cloned a normal SIL cDNA from a cell line which does not carry the rearrangement. The SIL cDNA has a long open reading frame of 1,287 amino acids, with a predicted molecular size of 143 kDa. The predicted protein is not homologous with any previously described protein; however, a potential eukaryotic topoisomerase I active site was identified. Cross-species hybridization using a SIL cDNA probe indicated that the SIL gene was conserved in mammals. A survey of human and murine cell lines and tissues demonstrated SIL mRNA to be ubiquitously expressed, at low levels, in hematopoietic cell lines and tissues. With the exception of 11.5-day-old mouse embryos, SIL mRNA was not detected in nonhematopoietic tissues. The genomic structure of SIL was also analyzed. The gene consists of 18 exons distributed over 70 kb, with the 5' portion of the gene demonstrating alternate exon utilization.
Project description:Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.
Project description:Moxetumomab pasudotox is a second-generation recombinant immunotoxin against CD22 on B-cell lineages. Antileukemic activity has been demonstrated in children with chemotherapy-refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL), with variable responses. Here, we report in vitro and in vivo evaluation of moxetumomab pasudotox treatment of human cell lines and patient-derived cells as a preliminary study to understand characteristics of sensitivity to treatment. Binding, internalization, and apoptosis were evaluated using fluorescently tagged moxetumomab pasudotox. Studies in NOD-scid IL2Rgnull mice showed a modest survival benefit in mice engrafted with 697 cells but not in NALM6 or the two patient-derived xenograft models.