Project description:IntroductionAlthough fecal microbiota transplantation (FMT) is a recommended, clinically efficacious, and cost-effective treatment for recurrent Clostridioides difficile infection (CDI), the scale of FMT use in the United States is unknown.MethodsWe developed a population-level CDI model.ResultsWe estimated that 48,000 FMTs could be performed annually, preventing 32,000 CDI recurrences.DiscussionImproving access to FMT could lead to tens of thousands fewer C. difficile episodes per year.
Project description:BackgroundEven in the modern era of kidney transplantation with improved surgical techniques, immunosuppression, and clinical care, HLA matching has been shown to be important in allograft survival in adults who receive an organ from either a deceased or living donor. We now explore the impact of genetic matching in pediatric first-kidney transplants.MethodsUsing the United Network for Organ Sharing data, we identified 18 602 first pediatric (<18 years) kidney transplants between October 1, 1987, and December 31, 2016. Recipients were classified by number of HLA mismatches and donor origin. Cox proportional hazard analyses, adjusting for recipient and donor transplant covariates, were performed to study the impact of HLA on kidney allograft survival.ResultsFor the fully adjusted Cox model there was a 30% increase in the hazard of allograft failure for 1 HLA mismatch, when compared with 0 mismatched recipients, and a 92% increase in risk for 6 mismatches. Although pediatric allografts from living donors survive as long or longer than those from deceased persons, they have a higher hazard of failure as a function of HLA mismatch. Kidney allografts from deceased donors HLA mismatched 0 to 3 were found to survive as long as organs from living donors HLA mismatched 4 to 6. In the full Cox model, there was a strong, linear effect on the hazard of allograft failure with quartile of age such that the youngest patients at age of transplant had the longest surviving grafts.ConclusionsHLA plays an important role in the survival of first pediatric kidney transplants. The better the match, and the earlier the transplant is performed in the child's life, the lower is the risk that the organ will fail.
Project description:BackgroundReduced microbiota diversity (dysbiosis) in people with HIV (PWH) likely contributes to inflammation, a driver of morbidity and mortality. We aimed to evaluate the safety and tolerability of 6 weekly oral fecal microbiota transplants (FMT) administered to reverse this dysbiosis.MethodsSix PWH on suppressive antiretroviral therapy (ART) received 6 weekly doses of lyophilized fecal microbiota product from healthy donors. Shotgun sequencing on stool before, after last FMT, and 20 weeks thereafter was performed. Inflammation and gut permeability biomarkers were measured.ResultsMedian age at week 0 was 39 years, CD4+ T cell count 496 cells/mm3, HIV RNA levels <20 copies/mL. FMT was safe and well-tolerated. α diversity increased in 4 participants from weeks 0 to 6, including the 3 with the lowest α diversity at week 0. At week 26, α diversity more closely resembled week 0 than week 6 in these 4 participants. Metagenomic analysis showed no consistent changes across all participants. One participant had high gut permeability and inflammation biomarker levels and low α diversity that improved between weeks 0 and 6 with a shift in distribution.ConclusionsWeekly FMT was safe and well-tolerated. α diversity increased in participants with the lowest baseline α diversity during the treatment period. Future randomized, controlled trials of FMT should consider evaluating PWH with greater inflammation, gut damage, or dysbiosis as this population may be most likely to show a significant response.ClinicalTrials.gov Identifier: NCT03329560.
Project description:Recurrent Clostridium difficile infection (RCDI) is associated with repeated antibiotic treatment and the enhanced growth of antibiotic-resistant microbes. This study tested the hypothesis that patients with RCDI would harbor large numbers of antibiotic-resistant microbes and that fecal microbiota transplantation (FMT) would reduce the number of antibiotic-resistant genes.In a single center study, patients with RCDI (n = 20) received FMT from universal donors via colonoscopy. Stool samples were collected from donors (n = 3) and patients prior to and following FMT. DNA was extracted and shotgun metagenomics performed. Results as well as assembled libraries from a healthy cohort (n = 87) obtained from the Human Microbiome Project were aligned against the NCBI bacterial taxonomy database and the Comprehensive Antibiotic Resistance Database. Results were corroborated through a DNA microarray containing 354 antibiotic resistance (ABR) genes.RCDI patients had a greater number and diversity of ABR genes compared with donors and healthy controls. Beta-lactam, multidrug efflux pumps, fluoroquinolone, and antibiotic inactivation ABR genes were increased in RCDI patients, although donors primarily had tetracycline resistance. RCDI patients were dominated by Proteobacteria with Escherichia coli and Klebsiella most prevalent. FMT resulted in a resolution of symptoms that correlated directly with a decreased number and diversity of ABR genes and increased Bacteroidetes and Firmicutes with reduced Proteobacteria. ABR gene profiles were maintained in recipients for up to a year following FMT.RCDI patients have increased numbers of antibiotic-resistant organisms. FMT is effective in the eradication of pathogenic antibiotic-resistant organisms and elimination of ABR genes.
Project description:BackgroundFecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases.MethodsTo overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline.ResultsFVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy.ConclusionsThis proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.
Project description:IntroductionAntibiotic resistant bacterial infections (ARBIs) are extremely common in nursing home residents. These infections typically occur after a course of antibiotics, which eradicate both pathological and beneficial organisms. The eradication of beneficial organisms likely facilitates subsequent ARBIs. Autologous fecal microbiota transplant (aFMT) has been proposed as a potential treatment to reduce ARBIs in nursing home residents. Our objective was to determine the feasibility and safety of aFMT in a nursing home population.MethodsPilot clinical trial. We evaluated feasibility as total number of stool samples collected for aFMT production and safety as the number and relatedness of serious (SAE) and non-serious adverse events (AE).ResultsWe screened 468 nursing home residents aged ≥18 years for eligibility; 67 enrolled, distributed among three nursing homes. Participants were 62.7% female and 35.8% Black. Mean age was 82.2 ± 8.5 years. Thirty-three participants underwent successful stool collection. Seven participants received antibiotics; four participants underwent aFMT. There were 40 SAEs (17 deaths) and 11 AEs. In the aFMT group, there were 3 SAEs (2 deaths) and 10 AEs. All SAEs and AEs were judged unrelated to the study intervention.ConclusionsIn this pilot study of aFMT in nursing home residents, less than half were able to provide adequate stool samples for aFMT. There were no related SAEs or AEs during the study. In sum, we conclude aFMT has limited feasibility in a nursing home population due to logistic and technical challenges but is likely safe.Trial registrationClinicalTrials.gov Identifier: NCT03061097.
Project description:The intestinal microbiota and its functions are intricately interwoven with host physiology. Colonizing rodents with donor microbiota provides insights into host-microbiota interactions characterization and the understanding of disease physiopathology. However, a better assessment of inoculation methods and recipient mouse models is needed. Here, we compare the engraftment at short and long term of genetically obese mice microbiota in germ-free (GF) mice and juvenile and adult specific pathogen free (SPF) mice. We also tested the effects of initial microbiota depletion before microbiota transfer. In the present work, donor microbiota engraftment was better in juvenile SPF mice than in adult SPF mice. In juvenile mice, initial microbiota depletion using laxatives or antibiotics improved donor microbiota engraftment 9 weeks but not 3 weeks after microbiota transfer. Microbiota-depleted juvenile mice performed better than GF mice 3 weeks after the microbiota transfer. However, 9 weeks after transfer, colonized GF mice microbiota had the lowest Unifrac distance to the donor microbiota. Colonized GF mice were also characterized by a chronic alteration in intestinal absorptive function. With these collective results, we show that the use of juvenile mice subjected to initial microbiota depletion constitutes a valid alternative to GF mice in microbiota transfer studies.
Project description:BackgroundPediatric heart transplant (PHT) patients have the highest waitlist mortality of solid organ transplants, yet more than 40% of viable hearts are unutilized. A tool for risk prediction could impact these outcomes. This study aimed to compare and validate the PHT risk score models (RSMs) in the literature.MethodsThe literature was reviewed to identify RSMs published. The United Network for Organ Sharing (UNOS) registry was used to validate the published models identified in a pediatric cohort (<18 years) transplanted between 2017 and 2019 and compared against the Scientific Registry of Transplant Recipients (SRTR) 2021 model. Primary outcome was post-transplant 1-year mortality. Odds ratios were obtained to evaluate the association between risk score groups and 1-year mortality. Area under the curve (AUC) was used to compare the RSM scores on their goodness-of-fit, using Delong's test.ResultsSix recipient and one donor RSMs published between 2008 and 2021 were included in the analysis. The validation cohort included 1,003 PHT. Low-risk groups had a significantly better survival than high-risk groups as predicted by Choudhry (OR = 4.59, 95% CI [2.36-8.93]) and Fraser III (3.17 [1.43-7.05]) models. Choudhry's and SRTR models achieved the best overall performance (AUC = 0.69 and 0.68, respectively). When adjusted for CHD and ventricular assist device support, all models reported better predictability [AUC > 0.6]. Choudhry (AUC = 0.69) and SRTR (AUC = 0.71) remained the best predicting RSMs even after adjustment.ConclusionAlthough the RSMs by SRTR and Choudhry provided the best prediction for 1-year mortality, none demonstrated a strong (AUC ≥ 0.8) concordance statistic. All published studies lacked advanced analytical approaches and were derived from an inherently limited dataset.