Unknown

Dataset Information

0

Acetylation turns leucine into a drug by membrane transporter switching.


ABSTRACT: Small changes to molecules can have profound effects on their pharmacological activity as exemplified by the addition of the two-carbon acetyl group to make drugs more effective by enhancing their pharmacokinetic or pharmacodynamic properties. N-acetyl-D,L-leucine is approved in France for vertigo and its L-enantiomer is being developed as a drug for rare and common neurological disorders. However, the precise mechanistic details of how acetylation converts leucine into a drug are unknown. Here we show that acetylation of leucine switches its uptake into cells from the L-type amino acid transporter (LAT1) used by leucine to organic anion transporters (OAT1 and OAT3) and the monocarboxylate transporter type 1 (MCT1). Both the kinetics of MCT1 (lower affinity compared to LAT1) and the ubiquitous tissue expression of MCT1 make it well suited for uptake and distribution of N-acetyl-L-leucine. MCT1-mediated uptake of a N-acetyl-L-leucine as a prodrug of leucine bypasses LAT1, the rate-limiting step in activation of leucine-mediated signalling and metabolic process inside cells such as mTOR. Converting an amino acid into an anion through acetylation reveals a way for the rational design of drugs to target anion transporters.

SUBMITTER: Churchill GC 

PROVIDER: S-EPMC8338929 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7448969 | biostudies-literature
| S-EPMC9749938 | biostudies-literature
| S-EPMC7305105 | biostudies-literature
| S-EPMC6990642 | biostudies-literature
| S-EPMC3204869 | biostudies-literature
| S-EPMC8380186 | biostudies-literature
| S-EPMC6044967 | biostudies-literature
| S-EPMC4924846 | biostudies-literature
| S-EPMC7232864 | biostudies-literature
| S-EPMC6110081 | biostudies-literature