Unknown

Dataset Information

0

Deep learning for the standardized classification of Ki-67 in vulva carcinoma: A feasibility study.


ABSTRACT:

Background

The aim of this study is to demonstrate the feasibility of automatic classification of Ki-67 histological immunostainings in patients with squamous cell carcinoma of the vulva using a deep convolutional neural network (dCNN).

Material and methods

For evaluation of the dCNN, we used 55 well characterized squamous cell carcinomas of the vulva in a tissue microarray (TMA) format in this retrospective study. The tumor specimens were classified in 3 different categories C1 (0-2%), C2 (2-20%) and C3 (>20%), representing the relation of the number of KI-67 positive tumor cells to all cancer cells on the TMA spot. Representative areas of the spots were manually labeled by extracting images of 351 × 280 pixels. A dCNN with 13 convolutional layers was used for the evaluation. Two independent pathologists classified 45 labeled images in order to compare the dCNN's results to human readouts.

Results

Using a small labeled dataset with 1020 images with equal distribution among classes, the dCNN reached an accuracy of 90.9% (93%) for the training (validation) data. Applying a larger dataset with additional 1017 labeled images resulted in an accuracy of 96.1% (91.4%) for the training (validation) dataset. For the human readout, there were no significant differences between the pathologists and the dCNN in Ki-67 classification results.

Conclusion

The dCNN is capable of a standardized classification of Ki-67 staining in vulva carcinoma; therefore, it may be suitable for quality control and standardization in the assessment of tumor grading.

SUBMITTER: Choschzick M 

PROVIDER: S-EPMC8346648 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9179448 | biostudies-literature
| S-EPMC8629999 | biostudies-literature
| S-EPMC8216551 | biostudies-literature
| S-EPMC5468356 | biostudies-literature
| S-EPMC7338379 | biostudies-literature
| S-EPMC8152311 | biostudies-literature
| S-EPMC5993857 | biostudies-other
| S-EPMC6106968 | biostudies-literature
| S-EPMC7829497 | biostudies-literature