Maf1 regulates intracellular lipid homeostasis in response to DNA damage response activation.
Ontology highlight
ABSTRACT: Surveillance of DNA damage and maintenance of lipid metabolism are critical factors for general cellular homeostasis. We discovered that in response to DNA damage-inducing UV light exposure, intact Caenorhabditis elegans accumulate intracellular lipids in a dose-dependent manner. The increase in intracellular lipids in response to exposure to UV light utilizes mafr-1, a negative regulator of RNA polymerase III and the apical kinases atm-1 and atl-1 of the DNA damage response (DDR) pathway. In the absence of exposure to UV light, the genetic ablation of mafr-1 results in the activation of the DDR, including increased intracellular lipid accumulation, phosphorylation of ATM/ATR target proteins, and expression of the Bcl-2 homology region genes, egl-1 and ced-13. Taken together, our results reveal mafr-1 as a component the DDR pathway response to regulating lipid homeostasis following exposure to UV genotoxic stress.
SUBMITTER: Hammerquist AM
PROVIDER: S-EPMC8351542 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA