Unknown

Dataset Information

0

A KLK4 proteinase substrate capture approach to antagonize PAR1.


ABSTRACT: Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind 'decoy' PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This 'substrate-capturing' KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 'proteinase substrate capture' approach to regulate proteinase-mediated PAR1 signaling.

SUBMITTER: Rabinovitch E 

PROVIDER: S-EPMC8352894 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3989293 | biostudies-literature
| S-EPMC6664178 | biostudies-literature
| S-EPMC10835031 | biostudies-literature
| S-EPMC10515750 | biostudies-literature
| S-EPMC2886121 | biostudies-literature
| S-EPMC3223204 | biostudies-literature
| S-EPMC7092912 | biostudies-literature
| S-EPMC4799876 | biostudies-literature
| S-EPMC8878363 | biostudies-literature
| S-EPMC4252046 | biostudies-literature