Unknown

Dataset Information

0

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension.


ABSTRACT: Finding new strategies for the treatment of heart failures using stem cells has attracted a lot of attention. Meanwhile, nanotechnology-based approaches to regenerative medicine hypothesize a possible combination of stem cells and nanotechnology in the treatment of diseases. This study aims to investigate the in vitro effect of silver nanoparticles (Ag-NPs) on the cardiomyogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) through detection of cardiac markers. For this purpose, MSCs were isolated from bone marrow resident and differentiated to the cardiac cells using a dedicated medium with Ag-NPs. Also, the cardiomyogenic differentiation of BM-MSCs was confirmed using immunocytochemistry. Then, real-time PCR and western blotting assay were used for measuring absolute telomere length (TL) measurement, and gene and protein assessment of the cells, respectively. It was found that 2.5 µg/mL Ag-NPs caused elongation of the telomeres and altered VEGF, C-TnI, VWF, SMA, GATA-4, TERT, and cyclin D protein and gene expression in the cardiomyogenically differentiated BM-MSCs. Also, there was a significant increase in the protein and gene expression of Wnt3 and β-catenin as main components of pathways. We concluded that Ag-NPs could change the in vitro expression of cardiac markers of BM-MSCs via the Wnt3/β-catenin signaling pathway.

SUBMITTER: Adibkia K 

PROVIDER: S-EPMC8353587 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4281312 | biostudies-literature
| S-EPMC3425038 | biostudies-literature
| S-EPMC6881043 | biostudies-literature
| S-EPMC2077031 | biostudies-literature
| S-EPMC8777121 | biostudies-literature
| S-EPMC6536344 | biostudies-literature
| S-EPMC4516329 | biostudies-literature
| S-EPMC3804615 | biostudies-other
| S-EPMC6495966 | biostudies-literature
| S-EPMC2615648 | biostudies-literature