Project description:IntroductionVero Cell, AstraZeneca, Janssen, mRNA-1273 (Moderna), and Pfizer COVID-19 vaccines have been authorized for emergency use in Nepal. These vacines have been linked to some adverse effects, including fever, myalgia, and headache. Furthermore Bell's Palsy a rare adverse effect was also reported to be associated with the use of mRNA-1273 (Moderna) vaccine in some patients.Case presentationIn this case report we present a 17-year-old female who acquired Bell's Palsy following the administration of mRNA-1273 (Moderna) COVID-19 vaccination.DiscussionThe possible etiology of BP that has been suggested is infection by reactivated viruses, such as the varicella-zoster virus (VZV), herpes simplex virus type 1 (HSV-1), human herpesvirus 6, and the Usutu virus, [1] the most accepted hypothesis is the one with reactivation of latent Herpes Simplex Virus type 1 in the geniculate ganglia of the facial nerves, an autoimmune mechanism through the mimicry of host molecules by the antigens of the vaccines.ConclusionThough the extent of association between the mRNA vaccination and the development of Bell's Palsy has yet to be confirmed, this example highlights the need to closely monitor side effects and repercussions after receiving a new vaccine.
Project description:Real-world analysis of the incidence of SARS-CoV-2 infection post vaccination is important in determining the comparative effectiveness of the available vaccines. In this retrospective cohort study using deidentified administrative claims for Medicare Advantage and commercially insured individuals in a research database we examine over 3.5 million fully vaccinated individuals, including 8,848 individuals with SARS-CoV-2 infection, with a follow-up period between 14 and 151 days after their second dose. Our primary outcome was the rate of Covid-19 infection occurring at 30, 60, and 90 days at least 14 days after the second dose of either the mRNA-1273 vaccine or the BNT162b2 vaccine. Sub-analyses included the incidence of hospitalization, ICU admission, and death/hospice transfer. Separate analysis was conducted for individuals above and below age 65 and those without a prior diagnosis of Covid-19. We show that immunization with mRNA-1273, compared to BNT162b2, provides slightly more protection against SARS-CoV-2 infection that reaches statistical significance at 90 days with a number needed to vaccinate of >290. There are no differences in vaccine effectiveness for protection against hospitalization, ICU admission, or death/hospice transfer (aOR 1.23, 95% CI (0.67, 2.25)).
Project description:COVID-19 vaccines are effective, but breakthrough infections have been increasingly reported. We conducted a test-negative case-control study to assess the durability of protection against symptomatic infection after vaccination with mRNA-1273. We fit conditional logistic regression (CLR) models stratified on residential county and calendar date of SARS-CoV-2 PCR testing to assess the association between the time elapsed since vaccination and the odds of symptomatic infection, adjusted for several covariates. There were 2,364 symptomatic individuals who had a positive SARS-CoV-2 PCR test after full vaccination with mRNA-1273 ("cases") and 12,949 symptomatic individuals who contributed 15,087 negative tests after full vaccination ("controls"). The odds of symptomatic infection were significantly higher 250 days after full vaccination compared to the date of full vaccination (Odds Ratio [OR]: 2.47, 95% confidence interval [CI]: 1.19-5.13). The odds of non-COVID-19 associated hospitalization and non-COVID-19 pneumonia (negative control outcomes) remained relatively stable over the same time interval (Day 250 ORNon-COVID Hospitalization: 0.68, 95% CI: 0.47-1.0; Day 250 ORNon-COVID Pneumonia: 1.11, 95% CI: 0.24-5.2). The odds of symptomatic infection remained significantly lower almost 300 days after the first mRNA-1273 dose as compared to 4 days after the first dose, when immune protection approximates the unvaccinated state (OR: 0.26, 95% CI: 0.17-0.39). Low rates of COVID-19 associated hospitalization or death in this cohort precluded analyses of these severe outcomes. In summary, mRNA-1273 robustly protected against symptomatic SARS-CoV-2 infection at least 8 months after full vaccination, but the degree of protection waned over this time period.
Project description:The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit-risk assessment of several vaccine platform technologies, including nucleic acid (RNA and DNA) vaccines. This paper uses the BRAVATO template to review the features of a vaccine employing a proprietary mRNA vaccine platform to develop Moderna COVID-19 Vaccine (mRNA-1273); a highly effective vaccine to prevent coronavirus disease 2019 (Covid-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In response to the pandemic the first in human studies began in March 2020 and the pivotal, placebo-controlled phase 3 efficacy study in over 30,000 adults began in July 2020. Based on demonstration of efficacy and safety at the time of interim analysis in November 2020 and at the time of trial unblinding in March 2021, the mRNA-1273 received Emergency Use Authorization in December 2020 and full FDA approval in January 2022.
Project description:BackgroundDifferences in immunogenicity between mRNA SARS-CoV-2 vaccines have not been well characterized in patients undergoing dialysis. We compared the serologic response in patients undergoing maintenance hemodialysis after vaccination against SARS-CoV-2 with BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna).MethodsWe conducted a prospective observational cohort study at 2 academic centres in Toronto, Canada, from Feb. 2, 2021, to July 20, 2021, which included 129 and 95 patients who received the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines, respectively. We measured SARS-CoV-2 immunoglobulin G antibodies to the spike protein (anti-spike), receptor binding domain (anti-RBD) and nucleocapsid protein (anti-NP) at 6-7 and 12 weeks after the second dose of vaccine and compared those levels with the median convalescent serum antibody levels from 211 controls who were previously infected with SARS-CoV-2.ResultsAt 6-7 weeks after 2-dose vaccination, we found that 51 of 70 patients (73%) who received BNT162b2 and 83 of 87 (95%) who received mRNA-1273 attained convalescent levels of anti-spike antibody (p < 0.001). In those who received BNT162b2, 35 of 70 (50%) reached the convalescent level for anti-RBD compared with 69 of 87 (79%) who received mRNA-1273 (p < 0.001). At 12 weeks after the second dose, anti-spike and anti-RBD levels were significantly lower in patients who received BNT162b2 than in those who received mRNA-1273. For anti-spike, 70 of 122 patients (57.4%) who received BNT162b2 maintained the convalescent level versus 68 of 71 (96%) of those who received mRNA-1273 (p < 0.001). For anti-RBD, 47 of 122 patients (38.5%) who received BNT162b2 maintained the anti-RBD convalescent level versus 45 of 71 (63%) of those who received mRNA-1273 (p = 0.002).InterpretationIn patients undergoing hemodialysis, mRNA-1273 elicited a stronger humoral response than BNT162b2. Given the rapid decline in immunogenicity at 12 weeks in patients who received BNT162b2, a third dose is recommended in patients undergoing dialysis as a primary series, similar to recommendations for other vulnerable populations.
Project description:The aim of the study was to examine the impact of COVID-19 vaccination on the anti-SARS-CoV-2 spike receptor binding domain IgG antibody (SRBD IgG) binding ratio (SBR) from Alpha, Beta, and Gamma variants of SARS-CoV-2 in pregnant women and neonates. The impact of antenatal influenza (flu) and pertussis (Tdap) vaccines was also studied. We enrolled pregnant women vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected maternal plasma (MP) and neonatal cord blood (CB) during delivery to determine the SBR via enzyme-linked immunosorbent assays (ELISA). A total of 78 samples were collected from 39 pregnant women. The SBR was higher for Alpha variants compared to Beta/Gamma variants (MP: 63.95% vs. 47.91% vs. 43.48%, p = 0.0001; CB: 72.14% vs. 56.78% vs. 53.66%, p = 0.006). Pregnant women receiving two doses of the COVID-19 vaccine demonstrated a better SBR against SARS-CoV-2 Alpha, Beta, and Gamma variants than women receiving just a single dose. Women who received the Tdap/flu vaccines demonstrated a better SBR when two COVID-19 vaccine doses were < 6 weeks apart. A better SBR was detected among women who had more recently received their second COVID-19 vaccine dose. Two doses of the COVID-19 vaccine provided recipients with a better SBR for Alpha/Beta/Gamma variants. Although Tdap/flu vaccines may affect the efficacy of the COVID-19 vaccine, different vaccination timings can improve the SBR.
Project description:BackgroundImmune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses.MethodsWe followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose. Outcomes were antibody titers, antibody avidity, and AIM+ T cell function and phenotype. Statistical analysis used antibody titers in linear mixed-effects linear regression with clinical predictors including, age, sex, prior infection status, and clinical frailty scale (CFS) score. T cell function analysis used clinical predictors and cellular phenotype variables in linear regression models.ResultsParticipants (n=15) had median age of 90 years and mild, moderate, or severe frailty scores (n=3, 7, or 5 respectively). After 2 vaccine doses, anti-spike antibody titers were higher in 5-fold higher in individuals with mild frailty compared to severe frailty and 9-fold higher in individuals with prior COVID-19 infection compared to uninfected (p=0.02 and p<0.001). Following the booster, titers improved regardless of COVID-19 infection or frailty. Antibody avidity significantly declined following 2 vaccine doses regardless of frailty status, but reached maximal avidity after the booster. Spike-specific CD4+ T cell responses were modulated by frailty and terminally differentiated effector memory TEMRA cells, and spike-specific TFH cell responses were inversely correlated with age. Additionally, an immune-senescent memory T cell phenotype was correlated with frailty and functional decline.ConclusionsWe described the separate influences of frailty and age on adaptive immune responses to the Moderna COVID-19 mRNA vaccine. Though overall antibody responses were robust, higher frailty diminished initial antibody quantity, and all older adults had impaired antibody avidity. Following the booster, antibody responses improved, overcoming the effects of age and frailty. CD4+ T cell responses were independently impacted by age, frailty, and burden of immune-senescence. Frailty was correlated with increased burden of immune-senescence, suggesting an immune-mediated mechanism for physiological decline.
Project description:The bivalent (original and Omicron BA.4/BA.5) mRNA-1273 COVID-19 vaccine was authorized to offer broader protection against COVID-19. We conducted a matched cohort study to evaluate the effectiveness of the bivalent vaccine in preventing hospitalization for COVID-19 (primary outcome) and medically attended SARS-CoV-2 infection and hospital death (secondary outcomes). Compared to individuals who did not receive bivalent mRNA vaccination but received ≥2 doses of any monovalent mRNA vaccine, the relative vaccine effectiveness (rVE) against hospitalization for COVID-19 was 70.3% (95% confidence interval, 64.0%-75.4%). rVE was consistent across subgroups and not modified by time since last monovalent dose or number of monovalent doses received. Protection was durable ≥3 months after the bivalent booster. rVE against SARS-CoV-2 infection requiring emergency department/urgent care and against COVID-19 hospital death was 55.0% (50.8%-58.8%) and 82.7% (63.7%-91.7%), respectively. The mRNA-1273 bivalent booster provides additional protection against hospitalization for COVID-19, medically attended SARS-CoV-2 infection, and COVID-19 hospital death.
Project description:BackgroundImmune responses to COVID-19 mRNA vaccines have not been well characterized in frail older adults. We postulated that frailty is associated with impaired antibody and cellular mRNA vaccine responses.MethodsWe followed older adults in a retirement facility with longitudinal clinical and serological samples from the first Moderna mRNA-1273 vaccine dose starting in February 2021 through their 3rd (booster) vaccine dose. Outcomes were antibody titers, antibody avidity, and AIM+ T cell function and phenotype. Statistical analysis used linear regression with clustered error for antibody titers over multiple timepoints with clinical predictors including, age, sex, prior infection status, and clinical frailty scale (CFS) score. T cell function analysis used linear regression models with clinical predictors and cellular memory phenotype variables.ResultsParticipants (n = 15) had median age of 90 years and mild, moderate, or severe frailty scores (n = 3, 7, or 5 respectively). Over the study time course, anti-spike antibody titers were 10-fold higher in individuals with lower frailty status (p = 0.001 and p = 0.005, unadjusted and adjusted for prior COVID-19 infection). Following the booster, titers to spike protein improved regardless of COVID-19 infection or degree of frailty (p = 0.82 and p = 0.29, respectively). Antibody avidity significantly declined over 6 months in all participants following 2 vaccine doses (p < 0.001), which was further impaired with higher frailty (p = 0.001). Notably, avidity increased to peak levels after the booster (p < 0.001). Overall antibody response was inversely correlated with a phenotype of immune-senescent T cells, CD8 + CD28- TEMRA cells (p = 0.036, adjusted for COVID-19 infection). Furthermore, there was increased detection of CD8 + CD28- TEMRA cells in individuals with greater frailty (p = 0.056, adjusted for COVID-19).ConclusionsWe evaluated the immune responses to the Moderna COVID-19 mRNA vaccine in frail older adults in a retirement community. A higher degree of frailty was associated with diminished antibody quantity and quality. However, a booster vaccine dose at 6 months overcame these effects. Frailty was associated with an increased immune-senescence phenotype that may contribute to the observed changes in the vaccine response. While the strength of our conclusions was limited by a small cohort, these results are important for guiding further investigation of vaccine responses in frail older adults.