Project description:Morphological and functional optoacoustic imaging is enhanced by dedicated transgene reporters, in analogy to fluorescence methods. The development of optoacoustic reporters using protein engineering and directed evolution would be accelerated by high-throughput in-flow screening for intracellular, genetically encoded, optoacoustic contrast. However, accurate characterization of such contrast is impeded because the optoacoustic signals depend on the cell's size and position in the flow chamber. We report herein an optoacoustic flow cytometer (OA-FCM) capable of precise measurement of intracellular optoacoustic signals of genetically-encoded chromoproteins in flow. The novel system records light-scattering as a reference for the detected optoacoustic signals in order to account for cell size and position, as well as excitation light flux in the focal volume, which we use to reference the detected optoacoustic signals to enhance the system's precision. The OA-FCM was calibrated using micrometer-sized particles to showcase the ability to assess in-flow objects in the size range of single-cells. We demonstrate the capabilities of our OA-FCM to identify sub-populations in a mixture of two E. coli stocks expressing different reporter-proteins with a precision of over 90%. High-throughput screening of optoacoustic labels could pave the way for identifying genetically encoded optoacoustic reporters by transferring working concepts of the fluorescence field such as directed evolution and activated cell sorting.
Project description:Bacteria generate membrane vesicles, which are structures known as extracellular vesicles (EVs), reported to be involved in different pathogenic mechanisms, as it has been demonstrated that EVs participate in biofilm formation, cell-to-cell communication, bacteria-host interactions, and nutrients supply. EVs deliver nucleic acids, proteins, and polysaccharides. It has been reported that Helicobacter pylori (H. pylori) and Lactobacillus reuteri (L. reuteri), of both planktonic and biofilm phenotypes, produce EVs carrying extracellular DNA (eDNA). Here, we used polychromatic flow cytometry (PFC) to identify, enumerate, and characterize EVs as well as the eDNA-delivering EV compartment in the biofilm and planktonic phenotypes of H.pylori ATCC 43629 and L. reuteri DSM 17938. Biofilm formation was demonstrated and analyzed by fluorescence microscopy, using a classical live/dead staining protocol. The enumeration of EVs and the detection of eDNA-associated EVs were performed by PFC, analyzing both whole samples (cells plus vesicles) and EVs isolated by ultracentrifugation confirm EVs isolated by ultracentrifugation. PFC analysis was performed relying on a known-size beaded system and a mix of three different fluorescent tracers. In detail, the whole EV compartment was stained by a lipophilic cationic dye (LCD), which was combined to PKH26 and PicoGreen that selectively stain lipids and DNA, respectively. Fluorescence microscopy results displayed that both H. pylori and L. reuteri produced well-structured biofilms. PFC data highlighted that, in both detected bacterial species, biofilms produced higher EVs counts when paralleled to the related planktonic phenotypes. Furthermore, the staining with PicoGreen showed that most of the generated vesicles were associated with eDNA. These data suggest that the use of PFC, set according to the parameters here described, allows for the study of the production of eDNA-associated EVs in different microbial species in the same or several phases of growth, thus opening new perspectives in the study of microbial derived EVs in clinical samples.
Project description:Neutrophil extracellular traps (NETs) formation has been implicated in an increasing number of infectious and non-infectious pathologies. NETosis is a tightly regulated process; the end-stage and read-out is the formation of DNA strands extruded from the nuclei, and traditionally assessed by fluorescence microscopy. Since NETosis has emerged as a possible biomarker of the inflammatory process, there is a need for less time-consuming, consistent, and quantitative approaches to improve its application in clinical assessment of pro-inflammatory conditions. Imaging Flow Cytometry (IFC) combines features of conventional flow cytometry with qualitative power of fluorescence microscopy and has an added advantage of the capability of assessing the early processes leading up to extrusion of the DNA-scaffolded strands. We explored the optimal imaging-based tools that can be used to measure citrullination of H4 in early NETosis. IFC identified and quantified histone 4 citrullination (H4cit3) induced with several known NETosis stimuli (Ionophore, PMA, LPS, Hemin, and IL-8) following treatment periods ranging from 2 to 60 min. Its relationship with other alterations at nuclear and cellular level, such as nuclear decondensation and super-condensation, multi-lobulated nuclei vs. 1-lobe nuclei and cell membrane damage, were also quantified. We show that the early progress of the H4cit3 response in NETosis depends on the stimulus. Our method identifies fast (Ionophore and Hemin), intermediate and slow (PMA) inducers and shows that H4cit3 appears to have a limited contribution to both early LPS- and IL-8-induced NETosis. While this method is rapid and of a higher throughput compared to fluorescence microscopy, detection and quantification is limited to H4cit3-mediated nuclear events and is likely to be stimulus- and signaling pathway dependent.
Project description:Flow cytometry is one of the most important technologies for high-throughput single-cell analysis. Fluorescent labeling acts as the primary approach for cellular analysis in flow cytometry. Nevertheless, the fluorescent tags are not applicable to all cases, especially to small molecules, for which labeling may significantly perturb the biological functionality. Spontaneous Raman scattering flow cytometry offers the capability to non-invasively detect chemical contents of cells but suffers from slow data acquisition. In order to achieve label-free high-throughput single-particle analysis using Raman scattering, we developed a 32-channel multiplex stimulated Raman scattering flow cytometry (SRS-FC) technique that can measure chemical contents of single particles at a speed of 5 μs per Raman spectrum. Using mixed polymer beads, we demonstrate the discrimination of different particles at a throughput of up to 11,000 particles per second. This is a four orders of magnitude improvement in throughput compared to conventional spontaneous Raman flow cytometry. As a proof of concept, we show the differentiation of 3T3-L1 cells at different states by SRS-FC according to the difference in cellular chemical content. The SRS-FC technique opens new opportunities for high-throughput and high-content chemical analysis of live cells in a label-free manner.
Project description:Neutrophil extracellular traps (NETs) are extracellular defense mechanisms used by neutrophils, where chromatin is expelled together with histones and granular/cytoplasmic proteins. They have become an immunology hotspot, implicated in infections, but also in a diverse array of diseases such as systemic lupus erythematosus, diabetes, and cancer. However, the precise assessment of in vivo relevance in different disease settings has been hampered by limited tools to quantify occurrence of extracellular traps in experimental models and human samples. To expedite progress towards improved quantitative tools, we have developed computational pipelines to identify extracellular traps from an in vitro human samples visualized using the ImageStream® platform (Millipore Sigma, Darmstadt, Germany), and confocal images of an in vivo mouse disease model of aspergillus fumigatus pneumonia. Our two in vitro methods, tested on n?=?363/n?=145 images respectively, achieved holdout sensitivity/specificity 0.98/0.93 and 1/0.92. Our unsupervised method for thin lung tissue sections in murine fungal pneumonia achieved sensitivity/specificity 0.99/0.98 in n?=?14 images. Our supervised method for thin lung tissue classified NETs with sensitivity/specificity 0.86/0.90. We expect that our approach will be of value for researchers, and have application in infectious and inflammatory diseases.
Project description:Cellular viability is usually determined by measuring the capacity of cells to exclude vital dyes such as 4',6-diamidino-2-phenylindole (DAPI), or by assessing nuclear morphology with chromatinophilic plasma membrane-permeant dyes, such as Hoechst 33342. However, a fraction of cells that exclude DAPI or exhibit normal nuclear morphology have already lost mitochondrial functions and/or manifest massive activation of apoptotic caspases, and hence are irremediably committed to death. Here, we developed a protocol for the simultaneous detection of plasma membrane integrity (based on DAPI) or nuclear morphology (based on Hoechst 33342), mitochondrial functions (based on the mitochondrial transmembrane potential probe DiOC6(3)) and caspase activation (based on YO-PRO®-3, which can enter cells exclusively upon the caspase-mediated activation of pannexin 1 channels). This method, which allows for the precise quantification of dead, dying and healthy cells, can be implemented on epifluorescence microscopy or flow cytometry platforms and is compatible with a robotized, high-throughput workflow.
Project description:BackgroundNucleic acids can fold into non-canonical secondary structures named G-quadruplexes (G4s), which consist of guanine-rich sequences stacked into guanine tetrads stabilized by Hoogsteen hydrogen bonding, π-π interactions, and monovalent cations. G4 structure formation and properties are well established in vitro, but potential in vivo functions remain controversial. G4s are evolutionarily enriched at distinct, functional genomic loci, and both genetic and molecular findings indicate that G4s are involved in multiple aspects of cellular homeostasis. In order to gain a deeper understanding of the function of G4 structures and the trigger signals for their formation, robust biochemical methods are needed to detect and quantify G4 structures in living cells. Currently available methods mostly rely on fluorescence microscopy or deep sequencing of immunoprecipitated DNA or RNA using G4-specific antibodies. These methods provide a clear picture of the cellular or genomic localization of G4 structures but are very time-consuming. Here, we assembled a novel protocol that uses the G4-specific antibody BG4 to quantify G4 structures by flow cytometry (BG-flow).ResultsWe describe and validate a flow cytometry-based protocol for quantifying G4 levels by using the G4-specific antibody BG4 to label standard cultured cells (Hela and THP-1) as well as primary cells obtained from human blood (peripheral blood mononuclear cells (PBMCs)). We additionally determined changes in G4 levels during the cell cycle in immortalized MCF-7 cells, and validated changes previously observed in G4 levels by treating mouse macrophages with the G4-stabilizing agent pyridostatin (PDS).ConclusionWe provide mechanistic proof that BG-flow is working in different kinds of cells ranging from mouse to humans. We propose that BG-flow can be combined with additional antibodies for cell surface markers to determine G4 structures in subpopulations of cells, which will be beneficial to address the relevance and consequences of G4 structures in mixed cell populations. This will support ongoing research that discusses G4 structures as a novel diagnostic tool.
Project description:Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor's ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor's potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.
Project description:Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.