Ontology highlight
ABSTRACT: Premise
Phylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement of Heptacodium and Zabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb-Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times.Methods
Sampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off-target reads, and 10 fossils were used to calibrate dated trees.Results
Varying numbers of targeted loci and off-target plastomes were recovered from most taxa. Nuclear and plastid data confidently place Heptacodium with Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement of Zabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm-wide dating analyses, but many major splitting events date to the Eocene.Conclusions
The Angiosperms353 probe set facilitated the assembly of a large, single-copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades.
SUBMITTER: Lee AK
PROVIDER: S-EPMC8362060 | biostudies-literature |
REPOSITORIES: biostudies-literature