ABSTRACT: Introduction: Left ventricular reverse remodeling (LVRR) is associated with decreased cardiovascular mortality and improved cardiac survival and also crucial for therapeutic options. However, there is a lack of an early prediction model of LVRR in first-diagnosed dilated cardiomyopathy. Methods: This single-center study included 104 patients with idiopathic DCM. We defined LVRR as an absolute increase in left ventricular ejection fraction (LVEF) from >10% to a final value >35% and a decrease in left ventricular end-diastolic diameter (LVDd) >10%. Analysis features included demographic characteristics, comorbidities, physical sign, biochemistry data, echocardiography, electrocardiogram, Holter monitoring, and medication. Logistic regression, random forests, and extreme gradient boosting (XGBoost) were, respectively, implemented in a 10-fold cross-validated model to discriminate LVRR and non-LVRR, with receiver operating characteristic (ROC) curves and calibration plot for performance evaluation. Results: LVRR occurred in 47 (45.2%) patients after optimal medical treatment. Cystatin C, right ventricular end-diastolic dimension, high-density lipoprotein cholesterol (HDL-C), left atrial dimension, left ventricular posterior wall dimension, systolic blood pressure, severe mitral regurgitation, eGFR, and NYHA classification were included in XGBoost, which reached higher AU-ROC compared with logistic regression (AU-ROC, 0.8205 vs. 0.5909, p = 0.0119). Ablation analysis revealed that cystatin C, right ventricular end-diastolic dimension, and HDL-C made the largest contributions to the model. Conclusion: Tree-based models like XGBoost were able to early differentiate LVRR and non-LVRR in patients with first-diagnosed DCM before drug therapy, facilitating disease management and invasive therapy selection. A multicenter prospective study is necessary for further validation. Clinical Trial Registration:http://www.chictr.org.cn/usercenter.aspx (ChiCTR2000034128).