Project description:BackgroundExhaled nitric oxide (F(E)NO) measurements are used as a surrogate marker for eosinophilic airway inflammation. However, many constitutional and environmental factors affect F(E)NO, making it difficult to devise reference values. Our aim was to evaluate the relative importance of factors affecting F(E)NO in a well characterised adult population.MethodsData were obtained from 895 members of the Dunedin Multidisciplinary Health and Development Study at age 32. The effects of sex, height, weight, lung function indices, smoking, atopy, asthma and rhinitis on F(E)NO were explored by unadjusted and adjusted linear regression analyses.ResultsThe effect of sex on F(E)NO was both statistically and clinically significant, with F(E)NO levels approximately 25% less in females. Overall, current smoking reduced F(E)NO up to 50%, but this effect occurred predominantly in those who smoked on the day of the F(E)NO measurement. Atopy increased F(E)NO by 60%. The sex-related differences in F(E)NO remained significant (p < 0.001) after controlling for all other significant factors affecting F(E)NO.ConclusionEven after adjustment, F(E)NO values are significantly different in males and females. The derivation of reference values and the interpretation of FENO in the clinical setting should be stratified by sex. Other common factors such as current smoking and atopy also require to be taken into account.
Project description:BackgroundExhaled nitric oxide (FeNO) is a biomarker of airway inflammation. In the nitric oxide (NO) synthesis pathway, nitric oxide synthases (encoded by NOS1, NOS2A, and NOS3) and arginases (encoded by ARG1 and ARG2) compete for L-arginine. Although FeNO levels are higher in children with asthma/allergy, influence of these conditions on the relationships between variations in these genes and FeNO remains unknown. The aims of the study were to evaluate the role of genetic variations in nitric oxide synthases and arginases on FeNO in children and to assess the influence of asthma and respiratory allergy on these genetic associations.MethodsAmong children (6-11 years) who participated in the southern California Children's Health Study, variations in these five genetic loci were characterized by tagSNPs. FeNO was measured in two consecutive years (N = 2298 and 2515 in Years 1 and 2, respectively). Repeated measures analysis of variance was used to evaluate the associations between these genetic variants and FeNO.ResultsSequence variations in the NOS2A and ARG2 loci were globally associated with FeNO (P = 0.0002 and 0.01, respectively). The ARG2 association was tagged by intronic variant rs3742879 with stronger association with FeNO in asthmatic children (P-interaction = 0.01). The association of a NOS2A promoter haplotype with FeNO varied significantly by rs3742879 genotypes and by asthma.ConclusionVariants in the NO synthesis pathway genes jointly contribute to differences in FeNO concentrations. Some of these genetic influences were stronger in children with asthma. Further studies are required to confirm our findings.
Project description:ObjectiveEvaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm.IntroductionIntraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation.MethodsA total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group), 12 asthmatics (Asthma group) and 10 subjects with no previous airway disease or symptoms (Control group). All subjects were submitted to exhaled nitric oxide measurements (parts/billion), spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test.ResultsThe normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05). The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83)] compared with either the Bronchospasm [0.55 (0-1.26)] or the Control group [0.0 (0)] (p <0.05); exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85)], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7)] (p< 0.05).ConclusionsNon-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.
Project description:BackgroundExhaled nitric oxide is a marker of airway inflammation. Air pollution induces airway inflammation and oxidative stress. Little is known about the impact of air pollution on exhaled nitric oxide in young infants.MethodsThe Breathing for Life Trial recruited pregnant women with asthma into a randomised controlled trial comparing usual clinical care versus inflammometry-guided asthma management in pregnancy. Four hundred fifty-seven infants from the Breathing for Life Trial birth cohort were assessed at six weeks of age. Exhaled nitric oxide was measured in unsedated, sleeping infants. Its association with local mean 24-h and mean seven-day concentrations of ozone, nitric oxide, nitrogen dioxide, carbon monoxide, sulfur dioxide, ammonia, particulate matter less than 10 μm (PM10) and less than 2.5 μm (PM2.5) in diameter was investigated. The air pollutant data were sourced from local monitoring sites of the New South Wales Air Quality Monitoring Network. The association was assessed using a 'least absolute shrinkage and selection operator' (LASSO) approach, multivariable regression and Spearman's rank correlation.ResultsA seasonal variation was evident with higher median exhaled nitric oxide levels (13.6 ppb) in warmer months and lower median exhaled nitric oxide levels (11.0 ppb) in cooler months, P = 0.008. LASSO identified positive associations for exhaled nitric oxide with 24-h mean ammonia, seven-day mean ammonia, seven-day mean PM10, seven-day mean PM2.5, and seven-day mean ozone; and negative associations for eNO with seven-day mean carbon monoxide, 24-h mean nitric oxide and 24-h mean sulfur dioxide, with an R-square of 0.25 for the penalized coefficients. These coefficients selected by LASSO (and confounders) were entered in multivariable regression. The achieved R-square was 0.27.ConclusionIn this cohort of young infants of asthmatic mothers, exhaled nitric oxide showed seasonal variation and an association with local air pollution concentrations.
Project description:BackgroundAsthma and lipid metabolism are associated with systemic inflammation. However, the studies about the relationship between lipid profile, fractional exhaled nitric acid (FeNO) and pulmonary function test (PFT) results are currently lacking.MethodsWe enrolled asthma patients who had serum lipid profiles including apolipoprotein levels from March 1, 2019 to December 31, 2019. We classified the asthma patients into two groups according to the diagnosis method: (I) patients who were diagnosed based on clinical symptoms/signs and PFT results and (II) patients diagnosed with clinical symptoms/signs. Clinical characteristics including age, underlying diseases, smoking status, allergy test results and treatment agents were compared between the two groups. The associations between blood cholesterol levels including apolipoprotein and pulmonary functions were analyzed. Moreover, patients were divided into two groups according to the median value of apolipoprotein B (Apo B), and lung function test results were compared between the patients who had high and low Apo B levels.ResultsAmong the 167 patients, 93 (55.7%) were PFT-proven asthma patients. In PFT-proven asthma patients, the levels of total cholesterol (TC) (r =0.37, P=0.03), low-density lipoprotein (LDL) (r =0.46, P=0.01) and Apo B (r =0.38, P=0.02) showed a significant correlation with FeNO, which had no statistical significance in physician-diagnosed asthma group. In multivariate regression analysis, log (FeNO) showed a significant correlation with Apo B (P<0.01) after adjustment for presence of PFT-proven asthma (P=0.01) and current smoking (P=0.01). Patients with high Apo B levels had a lower post-bronchodilator (BD) forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) ratio (69.8 vs. 74.9, P=0.02) and lower post-BD FEV1 (%) (77.5 vs. 85.0, P=0.04) compared with those showing low Apo B levels.ConclusionsThe levels of Apo B and FeNO had positive correlations and high Apo B levels were associated with severe airflow obstruction and low FEV1 (%). Apo B could reflect the uncontrolled status of bronchial asthma and poor lung function.
Project description:ObjectiveAirway inflammation plays an important role in obstructive sleep apnea (OSA); exhaled nitric oxide is regarded as a noninvasive marker of airway inflammation. The aim of this study was to evaluate fractional exhaled nitric oxide (FeNO) and nasal nitric oxide (nNO) in patients with OSA.MethodsSeventy-five patients with OSA and 30 health controls were enrolled in this study. FeNO and nNO were measured before and after sleep. Nasal lavage was performed in 31 non-smoking individuals immediately after NO measurement in the morning. The sample of nasal lavage was taken for cell classification and analyzing interleukin 6 (IL-6) and interleukin 8 (IL-8).ResultsBoth FeNO and nNO were significantly higher in OSA (before sleep FeNO 21.08 ± 8.79 ppb vs.16.90 ± 6.86 ppb, p = 0.022; after sleep FeNO 25.57 ± 15.58 ppb vs.18.07 ± 6.25 ppb, p = 0.003; before sleep nNO 487.03 ± 115.83 ppb vs. 413.37 ± 73.10 ppb, p = 0.001; after sleep nNO 550.07 ± 130.24 ppb vs. 460.43 ± 109.77 ppb, p < 0.001). Furthermore, in non-smoking OSA, nNO levels were positively correlated with apnea hypopnea index (AHI) and average decrease of pulse arterial oxygen saturation (SpO2); after sleep, nNO was also positively associated to recording time with SpO2 < 90% and negatively associated to minimum SpO2. Both before and after sleep nNO levels were positively correlated with the percentage of neutrophils in nasal lavage (r = 0.528, p = 0.014; r = 0.702, p < 0.001, respectively). Additionally, before sleep nNO was also positively associated with IL-6 (r = 0.586, p = 0.005) and IL-8 (r = 0.520, p = 0.016) concentration.ConclusionThis study sustains the presence of airway inflammation in OSA patients with the increase of FeNO and nNO. The data suggests nNO might have greater value than FeNO since it positively correlated with OSA severity, and nNO is a potential bio-marker of nasal inflammation in non-smoking OSA patients.
Project description:BackgroundBlood eosinophil count (BEC) and fractional exhaled nitric oxide (FeNO) concentration are established biomarkers in asthma, associated particularly with the risk of exacerbations. We evaluated the relationship of BEC and FeNO as complementary and independent biomarkers of severe asthma exacerbations.MethodsThis observational study included data from the Optimum Patient Care Research Database. Asthma patients (18-80 years) with valid continuous data for 1 year before FeNO reading, ≥ 1 inhaled corticosteroid prescription, and BEC recorded ≤ 5 years before FeNO reading were separated into cohorts. Categorisation 1 was based on the American Thoracic Society criteria for elevated FeNO concentration (high: ≥ 50 ppb; non-high: < 25 ppb) and BEC (high: ≥ 0.300 × 109 cells/L; non-high: < 0.300 × 109 cells/L). Categorisation 2 (FeNO concentration, high: ≥ 35 ppb; non-high: < 35 ppb) was based on prior research. Reference groups included patients with neither biomarker raised.ResultsIn categorisation 1, patients with either high FeNO or high BEC (n = 200) had a numerically greater exacerbation rate (unadjusted rate ratio, 1.31 [95% confidence interval: 0.97, 1.76]) compared with patients in the reference group. Combination of high FeNO and high BEC (n = 27) resulted in a significantly greater exacerbation rate (3.67 [1.49, 9.04]). Similarly, for categorisation 2, when both biomarkers were raised (n = 53), a significantly greater exacerbation rate was observed (1.72 [1.00, 2.93]).ConclusionThe combination of high FeNO and high BEC was associated with significantly increased severe exacerbation rates in the year preceding FeNO reading, suggesting that combining FeNO and BEC measurements in primary care may identify asthma patients at risk of exacerbations.
Project description:BackgroundMore than one-quarter of the US population qualify as excessive alcohol consumers. Alcohol use impacts several lung diseases, and heavy consumption has been associated with poor clinical outcomes. The fractional excretion of exhaled nitric oxide (Feno) has clinical implications in multiple airways diseases. We hypothesized that excessive alcohol intake is associated with lower Feno levels.MethodsTo test this hypothesis, we examined a sample consisting of 12,059 participants, aged 21 to 79 years, interviewed between 2007 and 2012 from the National Health and Examination Survey. Two valid Feno measurements that were reproducible were recorded. Alcohol questionnaire data were used to define the following alcohol groups: never drinkers, nonexcessive drinkers, excessive drinkers, and former excessive drinkers. The natural logarithm of Feno values [ln(Feno)] as well as blood eosinophil count and C-reactive protein were used as dependent variables to test the association with alcohol groups including multivariable linear regression models with adjustment for predictors of Feno.ResultsExcessive alcohol consumption comprised 3,693 (26.9%) of the US sample population. Controlling for all other factors, excessive alcohol consumption had a negative association and was an independent predictor for ln(Feno) levels in comparison with the never-drinker group (-0.11; 95% CI, -0.17 to -0.06; P < .001). ln(Feno) levels decreased across categories of increasing alcohol use (P < .001).ConclusionsAccounting for alcohol use in the interpretation of Feno levels should be an additional consideration, and further investigations are warranted to explore the complex interaction between alcohol and nitric oxide in the airways.
Project description:Exhaled carbon monoxide (eCO) and fractional exhaled nitric oxide (FeNO) could reflect underlying inflammatory and oxidative stresses, which play important roles in pathogenetic pathways of metabolic syndrome (MetS). However, epidemiologic evidence was limited. We conducted a study in Wuhan-Zhuhai (WHZH) cohort of 3649 community participants to investigate the association between eCO, FeNO and MetS in both cross-sectional and prospective ways. The results showed that higher eCO and FeNO were associated cross-sectionally with a higher prevalence of MetS. The multivariable-adjusted odds ratios for MetS at baseline were 1.22 (95% confidence interval [CI]: 1.11 to 1.35) associated with per log eCO and 1.14 (95% CI: 1.00 to 1.30) associated with per log FeNO. During a follow-up of 3 years, 358/2181 new developed MetS cases were identified. Compared with lowest quartile of eCO and FeNO, the multivariable-adjusted risk ratios (95% CI) for MetS were 1.48 (1.06 to 2.06) related to the highest quartile of eCO. These findings remained consistent across sex but not smoking status, eCO was only associated with MetS in non-smokers when stratified by smoking status. In conclusion, our study demonstrated that eCO and FeNO were independently and positively associated with the prevalence of MetS cross-sectionally, while only eCO was positively related with the incidence of MetS prospectively.