Photoacoustic Force-Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy.
Ontology highlight
ABSTRACT: Precise and efficient delivery of nanomedicine to the target site has remained as a major roadblock in advanced cancer treatment. Here, a novel photoacoustic force (PAF)-guided nanotherapeutic system is reported based on a near-infrared (NIR)-absorbing semiconducting polymer (SP), showing significantly improved tumor accumulation and deep tissue penetration for enhanced phototherapeutic efficacy. The accumulation of nanoparticles in 4T1 tumor-bearing mice induced by the PAF strategy displays a fivefold enhancement in comparison with that of the traditional passive targeting pathway, in a significantly shortened time (45 min vs 24 h) with an enhanced penetration depth in tumors. Additionally, a tumor-bearing mouse model is rationally designed to unveil the mechanism, indicating that the nanoparticles enter solid tumors through enhanced transportation across blood vessel barriers via both inter-endothelial gaps and active trans-endothelial pathways. This process is specifically driven by PAF generated from the nanoparticles under NIR laser irradiation. The study thus demonstrates a new nanotherapeutic strategy with low dose, enhanced delivery efficiency in tumor, and boosted therapeutic efficacy, opening new doors for designing novel nanocarriers.
SUBMITTER: Wang J
PROVIDER: S-EPMC8373104 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA