In Situ Monitoring the Potassium-Ion Storage Enhancement in Iron Selenide with Ether-Based Electrolyte.
Ontology highlight
ABSTRACT: As one of the promising anode materials, iron selenide has received much attention for potassium-ion batteries (KIBs). Nevertheless, volume expansion and sluggish kinetics of iron selenide result in the poor reversibility and stability during potassiation-depotassiation process. In this work, we develop iron selenide composite matching ether-based electrolyte for KIBs, which presents a reversible specific capacity of 356 mAh g-1 at 200 mA g-1 after 75 cycles. According to the measurement of mechanical properties, it is found that iron selenide composite also exhibits robust and elastic solid electrolyte interphase layer in ether-based electrolyte, contributing to the improvement in reversibility and stability for KIBs. To further investigate the electrochemical enhancement mechanism of ether-based electrolyte in KIBs, we also utilize in situ visualization technique to monitor the potassiation-depotassiation process. For comparison, iron selenide composite matching carbonate-based electrolyte presents vast morphology change during potassiation-depotassiation process. When changing to ether-based electrolyte, a few minor morphology changes can be observed. This phenomenon indicates an occurrence of homogeneous electrochemical reaction in ether-based electrolyte, which results in a stable performance for potassium-ion (K-ion) storage. We believe that our work will provide a new perspective to visually monitor the potassium-ion storage process and guide the improvement in electrode material performance.
SUBMITTER: Li X
PROVIDER: S-EPMC8374025 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA