Project description:H3N2 canine influenza virus (CIV) emerged in dogs in China or Korea around 2005 and was first reported in 2008. In 2015, H3N2 CIV was detected in the United States and caused a huge outbreak. To date, H3N2 CIV is continuously circulating in dog populations in China, Korea, and the United States. For continuous monitoring of H3N2 CIV in China, we collected 180 dog nasal swab samples and 196 cat nasal swabs from veterinary hospitals in Guangdong Province between 2018 and 2021. Six emerging H3N2 CIV strains were isolated. Following full genome sequencing and phylogenetic analyses, we found that A/canine/Guangdong/1-3/2018 and A/canine/Guangdong/1-3/2021 diverged from the reported sequences of the Chinese H3N2 CIV strains. Moreover, we found that these H3N2 CIV strains belong to the group that contains US and northern China CIV strains in 2017 and 2019 and dominate in the dog population until 2021.
Project description:As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection.
Project description:What is known about this topic?Coronavirus disease 2019 (COVID-19) is widespread globally. In China, COVID-19 has been well controlled and has appeared only in importation-related cases. Local epidemics occur sporadically in China and have been contained relatively quickly.What is added by this report?Epidemiological investigation with genome sequence traceability analysis showed that the first case of COVID-19 in Nangong City acquired infection from a confirmed case from Shijiazhuang City; infection subsequently led to 76 local cases. All cases were associated with the index case, and most were located in Fenggong Street and did not spread outside of Nangong City. The main routes of transmission were family clusters, intra-unit transmission, and nosocomial transmission.What are the implications for public health practice?This study highlights new techniques for rapidly tracing cases and identifying COVID-19 transmission chains. The different epidemiological characteristics in Nangong City, from the earliest stages of the outbreak, suggest that allocation of health sources for prevention and treatment were reasonable. Preventing transmission within medical institutions and isolation facilities and strengthening management in the community should be priorities for COVID-19 control during a city lockdown.
Project description:SARS-CoV-2 variants with multiple amino acid mutations in the spike protein are emerging in different parts of the world, raising concerns regarding their possible impact on human immune response and vaccine efficacy against the virus. Recently, a variant named lineage B.1.1.7 was detected and shown to be rapidly spreading across the UK since November 2020. As surveillance for these SARS-CoV-2 variants of concern (VOCs) becomes critical, we have investigated the use of environmental surveillance (ES) for the rapid detection and quantification of B.1.1.7 viruses in sewage as a way of monitoring its expansion that is independent on the investigation of identified clinical cases. Next-generation sequencing analysis of amplicons synthesized from sewage concentrates revealed the presence of B.1.1.7 mutations in viral sequences, first identified in a sample collected in London on 10 November 2020 and shown to rapidly increase in frequency to >95% in January 2021, in agreement with clinical data over the same period. We show that ES can provide an early warning of VOCs becoming prevalent in the population and that, as well as B.1.1.7, our method can detect VOCs B.1.351 and P.1, first identified in South Africa and Brazil, respectively, and other viruses carrying critical spike mutation E484K, known to have an effect on virus antigenicity. Although we did not detect such mutation in viral RNAs from sewage, we did detect mutations at amino acids 478, 490, and 494, located close to amino acid 484 in the spike protein structure and known to also have an effect on antigenicity. IMPORTANCE The recent appearance and growth of new SARS-CoV-2 variants represent a major challenge for the control of the COVID-19 pandemic. These variants of concern contain mutations affecting antigenicity, which raises concerns on their possible impact on human immune response to the virus and vaccine efficacy against them. Here, we show how environmental surveillance for SARS-CoV-2 can be used to help us understand virus transmission patterns and provide an early warning of variants becoming prevalent in the population. We describe the detection and quantification of variant B.1.1.7, first identified in southeast England in sewage samples from London (UK) before widespread transmission of this variant was obvious from clinical cases. Variant B.1.1.7 was first detected in a sample from early November 2020, with the frequency of B.1.1.7 mutations detected in sewage rapidly increasing to >95% in January 2021, in agreement with increasing SARS-CoV-2 infections associated with B.1.1.7 viruses.