Project description:H3N2 canine influenza virus (CIV) emerged in dogs in China or Korea around 2005 and was first reported in 2008. In 2015, H3N2 CIV was detected in the United States and caused a huge outbreak. To date, H3N2 CIV is continuously circulating in dog populations in China, Korea, and the United States. For continuous monitoring of H3N2 CIV in China, we collected 180 dog nasal swab samples and 196 cat nasal swabs from veterinary hospitals in Guangdong Province between 2018 and 2021. Six emerging H3N2 CIV strains were isolated. Following full genome sequencing and phylogenetic analyses, we found that A/canine/Guangdong/1-3/2018 and A/canine/Guangdong/1-3/2021 diverged from the reported sequences of the Chinese H3N2 CIV strains. Moreover, we found that these H3N2 CIV strains belong to the group that contains US and northern China CIV strains in 2017 and 2019 and dominate in the dog population until 2021.
Project description:BackgroundsThe coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a global threat since 2020. The emergence of the Omicron variant in 2021, which replaced Delta as the dominant variant of concern, has had a significant adverse impact on the global economy and public health. During this period, Zhejiang Province implemented dynamic zeroing and focused on preventing imported cases. This study aimed to gain clear insight into the characteristics of imported COVID-19 cases in Zhejiang Province.MethodsWe conducted a systematic molecular epidemiological analysis of 146 imported cases between July 2021 and November 2022 in Zhejiang Province. Virus samples with cycle threshold (Ct) value less than 32 were performed next generation sequencing. Basing the whole genome sequence obtained after quality control and assembly of reads, the whole genome variation map and phylogenetic tree were constructed and further analyzed.ResultsOur study identified critical months and populations for surveillance, profiled the variation of various lineages, determined the evolutionary relationships among various lineages of SARS-CoV-2, and compared the results in Zhejiang with those obtained worldwide during this period.ConclusionThe continuous molecular epidemiological surveillance of imported cases of COVID-19 in Zhejiang Province during 2021 to 2022 is consistent with the global epidemic trend.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant was first reported in India. Thereafter, the Delta variant became the most prevalent variant globally. Here, we report the complete genome sequence of an early imported case of a SARS-CoV-2 B.1.617.2 AY.122 strain in Iraq. The strain was obtained from a flight passenger from India to Iraq on 20 April 2021.
Project description:Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that can potentially threaten South China. A Chinese family of four returning from Venezuela to China was found to be positive for ZIKV when the youngest son's fever was first detected at an airport immigration inspection. They were isolated temporarily in a local hospital in Enping city, Guangdong province, where their clinical data were recorded and urine and saliva were collected to isolate ZIKV and to obtain viral sequences. All of them except the mother presented mild symptoms of rash and fever. Envelope gene sequences from the father, daughter and son were completely identical. Phylogenetic analysis demonstrated that this strain is similar to several imported strains reported in recent months, which are all clustered into a group isolated from 2015 ZIKA outbreaks in Brazil. Together with the climatic features in Venezuela, New York and Guangdong in February, it can be concluded that our subjects are imported cases from Venezuela. With the same viral sequence being shared between family members, neither direct human-to-human nor vector transmission can be ruled out in this study, but the former seems more likely. Although our subjects had mild illness, epidemiologists and public health officials should be aware of the risk of further expansion of ZIKV transmission by local competent vectors.