Project description:Surveys were carried out in 2003-2006 to better understand the epidemiology of hantaviruses in the Inner Mongolia Autonomous Region of China (Inner Mongolia). Hemorrhagic fever with renal syndrome (HFRS) was first reported in this region in 1955 and has been an important public health problem here since then. During 1955-2006, 8,309 persons with HFRS were reported in Inner Mongolia (average incidence rate 0.89/100,000), and 261 (3.14%) died. Before the 1990s, all HFRS cases occurred in northeastern Inner Mongolia. Subsequently, HFRS cases were registered in central (1995) and western (1999) Inner Mongolia. In this study, hantaviral antigens were identified in striped field mice (Apodemus agrarius) from northeastern Inner Mongolia and in Norway rats (Rattus norvegicus) from middle and western Inner Mongolia. Phylogenetic analysis of hantaviral genome sequences suggests that HFRS has been caused mainly by Hantaan virus in northeastern Inner Mongolia and by Seoul virus in central and western Inner Mongolia.
Project description:Hand, foot, and mouth disease (HFMD) surveillance was initiated in the Inner Mongolia Autonomous Region of China in 2007, a crucial scrutiny for monitoring the prevalence of enterovirus serotypes associated with HFMD patients. However, this surveillance mostly focused on enterovirus 71 (EV-A71) and coxsackievirus A16; therefore, information on other enterovirus serotypes is limited. To identify the other circulating enterovirus serotypes in the HFMD outbreaks in Inner Mongolia in 2010, clinical samples from HFMD patients were investigated. Six coxsackievirus B4 (CVB4) strains were isolated and phylogenetic analyses of VP1 sequences were performed. Full-length genome sequences of two representative CVB4 isolates were acquired and similarity plot and bootscanning analyses were performed. The phylogenetic dendrogram indicated that all CVB4 strains could be divided into 5 genotypes (Genotypes I-V) with high bootstrap support (90-100%). The CVB4 prototype strain (JVB) was the sole member of genotype I. CVB4 strains belonging to genotype II, which were once common in Europe and the Americas, seemingly disappeared and gave way to genotype III and IV strains, which appear to be the dominant circulating strains in the world. All Chinese CVB4 strains belonged to Genotype V, a newly identified genotype supported by a high bootstrap value (100%), and are circulating only in mainland of China. Intertypic recombination occurred in the Chinese CVB4 strains with novel unknown serotype EV-B donor sequences. Two Chinese CVB4 strains had a virulent residue at position 129 of VP1, and one strain also had a virulent residue at position 16 of VP4. Increased surveillance is needed to monitor the emergence of new genetic lineages of enteroviruses in areas that are often associated with large-scale outbreaks. In addition, continued monitoring of enteroviruses by clinical surveillance and genetic characterization should be enhanced.
Project description:On 12 November 2019, one couple from the Sonid Left Qi (County) in the Inner Mongolia Autonomous Region was diagnosed with pneumonic plague in Beijing. The wife acquired the infection from her husband. Thereafter, two bubonic plague cases were identified in Inner Mongolia on November 16th and 24th. In this study, genome-wide single nucleotide polymorphism (SNP) analysis was used to identify the phylogenetic relationship of Yersinia pestis strains isolated in Inner Mongolia. Strains isolated from reservoirs in 2018 and 2019 in Inner Mongolia, together with the strain isolated from Patient C, were further clustered into 2.MED3m, and two novel lineages (2.MED3q, 2.MED3r) in the 2.MED3 population. According to the analysis of PCR-based molecular subtyping methods, such as the MLVA 14 scheme and seven SNP allele sequencing, Patients A/B and D were classified as 2.MED3m. In addition, strains from rodents living near the patients' residences were clustered into the same lineage as patients. Such observations indicated that human plague cases originated from local reservoirs. Corresponding phylogenetic analysis also indicated that rodent plague strains in different areas in Inner Mongolia belong to different epizootics rather than being caused by spreading from the same epizootic in Meriones unguiculatus in 2019.
Project description:Porcine parvoviruses (PPV) and porcine circoviruses type 2 (PCV2) are widespread in the pig population. Recently, it was suggested that PPV7 may stimulate PCV2 and PCV3 replication. The present study aimed to make detection and molecular characterization of PPV7 for the first time in eastern Inner Mongolia Autonomous Region, China. Twenty-seven of ninety-four samples (28.72%) and five in eight pig farms were PPV7 positive. Further detection showed that the co-infection rate of PPV7 and PCV2 was 20.21% (19/94), and 9.59% (9/94) for PPV7 and PCV3. In addition, the positive rate of PPV7 in PCV2 positive samples was higher than that in PCV2 negative samples, supporting that PCV2 could act as a co-factor for PPV7 infection. In total, four PPV7 strains were sequenced and designated as NM-14, NM-19, NM-4, and NM-40. The amplified genome sequence of NM-14 and NM-40 were 3,999nt in length, while NM-19 and NM-4 were 3,996nt with a three nucleotides deletion at 3,097-3,099, resulting in an amino acid deletion in the Cap protein. Phylogenetic analysis based on the capsid amino acid (aa) sequences showed that 52 PPV7 strains were divided into two clades, and the four PPV7 strains in this study were all clustered in clade 1. The genome and capsid amino acid sequence of the four PPV7 strains identified in this study shared 80.0-96.9% and 85.9-100% similarity with that of 48 PPV7 reference strains selected in NCBI. Simplot analysis revealed that NM-19 and NM-4 strains were probably produced by recombination of two PPV7 strains from China. The amino acid sequence alignment analysis of capsid revealed that the four PPV7 strains detected in Inner Mongolia had multiple amino acid mutations in the 6 B cell linear epitopes compared with the reference strains, suggesting that the four PPV7 strains may have different characteristics in receptor binding and immunogenicity. In summary, this paper reported the PPV7 infection and molecular characterization in the eastern of Inner Mongolia Autonomous Region for the first time, which is helpful to understand the molecular epidemic characteristics of PPV7.
Project description:The evaluation of grassland ecosystem restoration benefit considering herdsmen's preference is an important reference for the formulation of grassland protection policy. This study aims to evaluate the marginal benefits of grassland ecosystem services by using choice experiment and mixed logit (ML) model, and a latent class model (LCM) is estimated to identify and explain the heterogeneity of herdsmen's preference for the various functions of the grassland ecosystem, so as to estimate the benefits of grassland ecosystem restoration in Siziwang Banner and Damao Banner of Inner Mongolia Autonomous Region. The results reveal that the restoration benefit of the grassland ecosystem in the two banners is nearly 341.1 million RMB per year. The application of latent class model highlights three potential segments of the herdsmen with different preferences. The social, economic and environmental attitudinal characteristics of herdsmen have significant impacts on their preferences. Thus, to improve the universality of grassland ecological restoration policy, herdsmen's preferences should be thoroughly investigated before policy formulation and implementation. Meanwhile, it is important to publicize the grassland ecosystem services, to popularize the role of wildlife in the ecosystem, and to realize the benign interaction between wildlife protection and animal husbandry development.
Project description:A molecular surveillance of tick-borne diseases was performed in Hulunbuir City, Inner Mongolia. A total of 149 ticks including three species (Ixodes persulcatus, Haemaphysalis concinna, and Dermacentor silvarum) were collected. As many as 11 tick-borne bacterial pathogens were identified in them. Some of them have high positive rates. For example, Candidatus Rickettsia tarasevichiae was detected with a high prevalence of 72.48%, while Candidatus Lariskella sp. was detected in 31.54% of ticks. For both Rickettsia raoultii and Anaplasma phagocytophilum, two distinct genotypes were identified based on their phylogenetic trees based on 16S rRNA, gltA, and groEL sequences. Remarkable genetic diversity was also observed for 16S and flaB genes of Borreliella garinii, an agent of Lyme disease. Rickettsia heilongjiangensis causing Far-Eastern spotted fever (2.68%, 4/149), Ehrlichia muris causing human ehrlichiosis (4.70%, 7/149), Borrelia miyamotoi causing relapsing fever (2.01%, 3/149), and Borreliella afzelii causing Lyme disease (2.01%, 3/149) were also detected. Additionally, a previously uncharacterized Anaplasma species closely related to Anaplasma ovis was identified. Herein we name it "Candidatus Anaplasma mongolica". Based on these results, we propose that Yakeshi City might be a potential hotspot of tick-borne diseases.