Unknown

Dataset Information

0

Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts.


ABSTRACT: Optical atomic clocks have already overcome the eighteenth decimal digit of instability and uncertainty, demonstrating incredible control over external perturbations of the clock transition frequency. At the same time, there is an increasing demand for atomic (ionic) transitions and new interrogation and readout protocols providing minimal sensitivity to external fields and possessing practical operational wavelengths. One of the goals is to simplify the clock operation while maintaining the relative uncertainty at a low 10-18 level achieved at the shortest averaging time. This is especially important for transportable and envisioned space-based optical clocks. Here, we demonstrate implementation of a synthetic frequency approach for a thulium optical clock with simultaneous optical interrogation of two clock transitions. Our experiment shows suppression of the quadratic Zeeman shift by at least three orders of magnitude. The effect of the tensor lattice Stark shift in thulium can also be reduced to below 10-18 in fractional frequency units. This makes the thulium optical clock almost free from hard-to-control systematic shifts. The "simultaneous" protocol demonstrates very low sensitivity to the cross-talks between individual clock transitions during interrogation and readout.

SUBMITTER: Golovizin AA 

PROVIDER: S-EPMC8397736 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6461630 | biostudies-literature
| S-EPMC3108858 | biostudies-literature
| S-EPMC10954350 | biostudies-literature
| S-EPMC7906345 | biostudies-literature
| S-EPMC7513588 | biostudies-literature
| S-EPMC6884547 | biostudies-literature
| S-EPMC6513754 | biostudies-literature
| S-EPMC8278764 | biostudies-literature
| S-EPMC6448130 | biostudies-literature
| S-EPMC3750683 | biostudies-literature