Pesticides DEET, fipronil and maneb induce stress granule assembly and translation arrest in neuronal cells.
Ontology highlight
ABSTRACT: Pesticides entering our body, either directly or indirectly, are known to increase the risk of developing neurodegenerative disorders. The pesticide-induced animal models of Parkinson's disease and Alzheimer's disease recapitulates many of the pathologies seen in human patients and have become popular models for studying disease biology. However, the specific effect of pesticides at the cellular and molecular levels is yet to be fully established. Here we investigated the cellular effect of three commonly used pesticides: DEET, fipronil and maneb. Specifically, we looked at the effect of these pesticides in the formation of stress granules and the concomitant translational arrest in a neuronal cell line. Stress granules represent an ensemble of non-translating mRNAs and appear in cells under physiological stress. Growing evidence indicates that chronic stress may covert the transient stress granules into amyloids and may thus induce neurodegeneration. We demonstrate here that all three pesticides tested induce stress granules and translation arrest through the inactivation of the eukaryotic initiation factor, eIF2α. We also show that oxidative stress could be one of the major intermediary factors in the pesticide-induced stress granule formation and that it is a reversible process. Our results suggest that prolonged pesticide exposure may result in long-lived stress granules, thus compromising the neuronal stress response pathway and leading to neurodegeneration.
SUBMITTER: Bhadauriya P
PROVIDER: S-EPMC8405967 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA